——' -

REPORT DOCUMENTATION PAGE I ag s

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data
bneedurd :r?‘t fnvea?‘?%:emﬂ andd revls_;aw: this ooll@i_g:‘tuogt of Tfofrm.iartl;_on. Stc_end gomm‘ents regda;gmg th|s1b2u1rgeJn gstimate or any other aspect of this collection of information, including suggestions for reducing this

on Headquarters Services, Directorate for Information Operations and Reports, efferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 P oy, "o andlo the Office of Management and

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
_ October 28, 1998 Final Report 4/2/98 - 10/2/98
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Portable Reusable Application Software
SBIR Phase I Final Technical Report C N68335-98-C-0140
Item No. OOOlAF

6. AUTHOR(S)

N. Carl Ecklund, Technical Director, MCCI

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

. . ' REPORT NUMBER
Management Communications and Control, Inc. (MCCI) 0 v

2000 North 14th Street

Suite 220
Arlington, VA 22201 MCCI-98-NAWC-002

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
Charles Bohman, Government Technical Liaison AGENCY REPORT NUMBER

Naval Air Systems Command HQ - Code PMA-299
Bldg. 2272, Suite 156
47123 Buse Rd., Unit IPT

Patuxent River, MD 20670-1457 | 1
11. SUPPLEMENTARY NOTES 1 998 1 1 0 0 1 5 :

12a. DISTRIBUTION / AVAILABILITY STATEMENT 1£b -D[STRliBU:l'IO;‘liCCi)DE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 Words)

The need for application software portability and reusability has been increased by
the COTS revolution. Operating system and math library independence are essential to
portability strategies. However, in order to achieve the high throughput required by
real-time sensor processing systems, the executable must be optimized for the specific
target.) '

Management Communications and Control, Inc. (MCCI) has developed a methodology and a
toolset which provides translation of target independent applications to target specific
source code incorporating target optimized libraries. Application portability and
reusability is inherent in the methodology. An order of magnitude reduction in applica-
tion development time has been demonstrated. Life cycle costs should be reduced by at
least the same factor. The methodology supports low cost reuse of the AN/UYS-2 code base.
This report provides an overview of the methodology and the toolset. Porting of the
DICASS sonobuoy signal processing from an AN/UYS-2 implementation to an implementation
using the MCCI methodology and toolset is demonstrated.

14. SUBJECT TERMS Autocoding Toolset, AN/UYS-2 Code Reuse, Open APT, 15'_NUMB,ER§C'):9PAGES

Sonar Signal Processing, Portable Software, Life Cycle Cost 5 PTICE CODE
Reduction, Processing Graph Method (PGM), COTS '

[17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT |
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Portable Reusable Application Software for COTS Platforms
, SBIR N98-030 Phase |
Program Progress Report - 0001AF

Contractor:
Management Communications and Control, Inc.
(MCCI)
2000 North 14th Street
Suite 220
Arlington, VA 22201

Contract Number: N68335-98-C-0140

Key Person: Christopher B. Robbins, President

Government Technical Liaison:
Naval Air Systems Command HQ
Attn: Mr. Charles Bohman - Code PMA-299
Bldg. 2272, Suite 156, 47123 Buse Rd., Unit IPT
Patuxent River, MD 20670-1457

DTIC QUALITY IN SPECTED 4

Report Number: MCCI-98-NAWC-002

Portable Reusable Application Software
SBIR Phase | Final Technical Report

October 28, 1998

Prepared for:
Naval Air Systems Command
Code PMA-299
Patuxent River, MD 20670-1457

Prepared by:
Management Communications and Control Inc. (MCCI)
2000 North Fourteenth Street, Suite 220 '
Arlington, VA 22201

Under Contract Number:
C68335-98-C-0140

Approved for public release; distribution is unlimited.

Portable Reusable Application Software
SBIR Phase | Final Technical Report
Table of Contents

T INFOAUCHION ... er e et e srn s sa e e s e s sasannas 1
2. APPIICAtION OVEIVIEWcouoeieeerieerencrcrererers e e ssess s sse e sas s s s e sssssesasesansssssnsses 3
2.1 Description of the APPlICAtioN.........ocorrvrerrr e 3
2.2 DOMAIN PriMItIVES.....c.ccceriiertiicrrisrnrsrsnsssssnsesssesnsssne e sessesessesesssssssesesssssssessasssssssessees 4
2.3 CoNtrol Programs........cocccceeeerrvenesnsesnsesessessssesessssessessssssssasessasssesesesssessssesssssasesesesessereses 5
3. AUtOCOAING TOOISEL ..ot eb s s saees 6
3.1 OVEIVIEW......e ettt ettt sa et s a s e st smese e s e e s e neennenenens 6
3.2 AULOCOAING PrOCESScovvuiiiierrireersteeeseste ettt e e s se s s st s ons 6
3.2.1 Partition BUIIAETocooeieeeicce et ne e nne s s e eses 8
3.2.2 MPID Generator (MPIDGER).......ccccccimeriireeiereneesesessesesesessesessssssscesssssesseessesens 8
3.2.3 Application GENEIator..........ccoceveeerrieiererereree st sen e sessrenees 8
3.2.4 Static RUN-TIME SYStEM......ccccuoeeirtrrcerrene ettt 9

3.3 Ancillary SUPPOrt TOOIScceieirirererrere e 9
3.3.1 Command Program Graphical User Interface.......c..cccooveernvrnnirnneeeserennennnes 9
3.3.2 Performance SimMUIAtor ... 9
3.3.3 Architecture Definition TOOI ... 10
3.3.4 Graph Translation TOO! (GITT) ..ot 10
3.3.5 Virtual Design Maching (VDM) ...t sneesen e 10

S o (o To (B o111/ Y78 OSSO 10
4.1 Benchmarking of the MCCI Autocoding Toolset..........cccoooinicninniiicessins 10
4.2 MIT Lincoln Laboratory's Software Cost Model............ccoovrriieriinnnnninicinennne 13

5. Portability and Reusability.................. eeeereeeeeeeseereseeseesessesseseeseetesaesteneesteteteeeaeeaenanerenteerares 14
5.1 Porting the Autocoding Toolset to New Target Platforms.........ccccoovnnnncniene. 14
5.2 Porting the Run-Time System to New Target Platforms..........cccovveinncinnininnnns 16
5.3 Reusable Domain Primitive Application Graphs........c.ccccvverereirimneserenscssseenenees 17
5.4 HOL Control Program REUSE.........ccoueveriereririenerentrerese e sesssesssasssseses 18

6. Reuse of Existing AN/UYS-2 Applications..........ccceveriereenrnenninccnrrecescincsenceneenaeas 18
6.1 AN/UYS-2 Command Programs.........cccceceereenrenseesesessesesesessessusemsssesesesseneserassesens 18
6.2 Converting AN/UYS-2 Graphsc..cccenrvrirecncenrcererescereeseeesse s e 19
8.3 AN/UYS-2 ChaiNS.....coceoieierieirenirercnirrssreessssesseresne e s e e s ssssesessssssssesessssssssssssnsasanens 21
6.3.1 Creating the Graph from the Chain Descriptionccccccevrrerncniisiicincne 21
6.3.2 Modifications Based on Application Specific Use........ccccorerernnniccecnnenenene 22
6.3.3 CHN_ASNP EXAMPIE....cueecreeeertcenertrtn e ses s nssn e 22

6.4 DICASS CONVEISION......ccoiiieeirtitrnrreece sttt sas e e e sa s e sbs s 42
6.4.1 Graph and SUDGraphs...........ccceereeeerrnerirersriserre st sesassssessssssesssssnses 43
6.4.2 Domain PriMitiVESccorerrenienrecc st saeae s snsnies 45

L TG T 1 o -1 1= PR PSR RTRR 46
6.4.4 Partitioning......cococrireeiereesenec e e 46
B.4.5 TeSHNG ...ceerererr ettt s 63
6.4.6 Graph Value Sets.......cccorerrcnnrrrn e 76

L A = (17O 77
6.4.8 Level Of Effort........cccorenrercce e nenens 77
Management Communications & Control, Inc. i SBIR Phase | Final Technical Report

N68335-98-C-0140

6.4.9 Conclusions and RecommendationsS..........eeeeeeeiieeeireieeeeeeeeeeeeeeeeee e eseeenees 78

7. ILS SHrategy ...ccccccrcirmiirreceiererie sttt s r s e s e n s s 79
7.1 Board Replacement ILS Strategy......ccocoovevrecreierrecrceectc et 79
7.2 Board and Vendor Migration ...t sesneaeas 79
7.3 Incorporation of Performance Upgrades with Board Replacement...................... 80

Appendix A. Description of Chain for CHN_ASNP

Appendix B. Generalized Mapping of Q003 Primitives to Domain Primitives
Appendix C. Mapping of Parameters Q003 Primitives to Domain Primitives
Appendix D. Partition Graphs - lconic Format

Management Communications & Control, Inc. i SBIR Phase | Final Technical Report
N68335-98-C-0140

List of Figures

Figure 1. Typical System 4
Figure 2. Primitive Library Organization 5
Figure 3. Diagram of the Autocoding Toolset 7
Figure 4. PGM Domain Primitive Application Graph for SAR Benchmark 11
Figure 5. Range and Azimuth Partition Graphs and the Equivalent Application Graph
for SAR Benchmark 12
Figure 6. Comparison of GrTT Ada Behavior Model and MPID Unit Test Output
Vectors 12
Figure 7. Cost and Schedule Comparison of Software Development Using RASSP
PGM Based HW/SW Codesign Methodology and Tools vs. Standard Practice 14
Figure 8. Primitive Library Organization Extended for VSIP 15
Figure 9. DICASS Graph 20
Figure 10. Partition P_CWSIN_4 47
Figure 11. Simulated EW Sensor Data 64
Figure 12. Detail of Simulated EW Sensor Data 64
Figure 13. Simulated NS Sensor Data 65
Figure 14. Simulated Omni Sensor Data 65
Figure 15. Modified DICASS Equivalent Application Graph 66
Figure 16. Data on Queue ZQ 67
Figure 17. Data on Queue NSMQ 67
Figure 18. Data on Queue OMMQ 68
Figure 19. Data on Queue SC1 69
Figure 20. Detail of Data on Queue SC1 - 69
Figure 21. Detail of Data on SC2 - Real, Imaginary, and Magnitude 70
Figure 22. Data on Queue CDCM 71
Figure 23. Data on Queue BRCC » 71
Figure 24. Data on Queue BRCN 72
Figure 25. Data on Queue Nmean_FPSB 72
Figure 26. Data on Queue Nmean_NMWF 73
Figure 27. Data on Queue Nmean_UNWF 73
Figure 28. Data on Queue Cmean_NMWF 74
Figure 29. Data on Queue Audio_FLT 74
Figure 30. Data on Queue Waterfall_X10 75
Figure 31. Data on Queue Ascan_X2 75
Figure 32. Data on Queue Ascan_X6 76
Management Communications & Control, Inc. iii SBIR Phase | Final Technical Report

N68335-98-C-0140

Acronyms

AG - Application Generator

API - Application Program Interface

CGA - Channel Gain Adjust

CP - Command Program

CP GUI - Command Program Graphical User Interface
CPI - Command Program Interface

DPAG - Domain Primitive Application Graph

EAG - Equivalent Application Graph

GIP - Graph Instantiation Parameter

GrM - Graph Manager

GrTT - Graph Translation Tool

GSMP - Graph execution Simulation on Multiple Processors
GV - Graph Variable

IOP - input/Output Procedure

MPID - Multiprocessor Primitive Interface Description
MPIDGen - MPID Generator

NEP - Node Execution Parameter

PB - Partition Builder

PGM - Processing Graph Method

PID - Primitive Interface Description

PIP - Primitive Interface Procedure

PLU - Primitive Library Unit

SAR - Synthetic Aperture Radar

SPGN - Signal Processing Graph Notation

SRTS - Static Run-Time System

TPM - Target Primitive Map

Management Communications & Control, Inc. iv SBIR Phase | Final Technical Report

N68335-98-C-0140

Portable Reusable Application Software

1. Introduction

As the U. S. Navy transitions to COTS based systems, the need for portable and
reusable application software becomes essential. The life cycle for COTS hardware,
typically five years or less, is significantly shorter than the twenty plus years of an
operational platform. Additionally, the development and maintenance costs related to
software continue to increase in times of decreased funding.

Portable application software requires that the application software be independent of
target processor and platform Operating Systems (OS) and that the coding of modules
is standardized, such as ensuring ANSI C compliance. Any libraries referenced by the
software must also be standardized and portable.

A variety of operating systems are available today for the target processors and
platforms; however, no standard OS has been widely adopted by hardware vendors.
POSIX seems to be current “standard” OS; however, POSIX is a “heavy” OS that
contains many features that lead to a large memory requirements just for the OS.
There are also real-time issues that have become the subject of debate. Because of
the large amount of memory required even for a minimal POSIX implementation and
the real-time issues, many vendors are reluctant (or refuse) to modify their OS to be
POSIX compliant.

The high throughput requirements of signal processing applications require optimized
libraries since most compilers generate code that executes slower by a factor normally
in the range of four to six (or ever slower) than hand optimized code. Hardware
vendors have through the years developed their own libraries of signal processing
primitives which they optimize for the target processors that they support. These
libraries, while similar in functionality, are not compatible. As a minimum, the calling
sequences for the same functionality from two different vendors differ in the order
parameters are referenced. Additionally, while the core functionality is the same,
frequently a primitive from one vendor contains functionality that must be implemented
by a sequence of two or more primitives from another vendor. As an example, an FFT
might contain provisions for reordering the output.

There are, of course, different definitions (or more accurately levels) of “portability.”
True portability implies that the application can simply be recompiled for the new
target/platform. In the case of the large applications under consideration, this might
not be strictly true since the target/platforms are multiprocessor systems. As part of the
port to a new target/platform it is likely that either repartitioning and/or reassigning
sections of the application will be desired. Newer targets should have increased
processing power and therefore the application can be executed on fewer processors.
Since inter-processor communications (IPC) can lead to increased overhead, using
fewer processors should result in increased efficiency by reducing the amount of IPC.

Management Communications & Control, Inc. 1 SBIR Phase | Final Technical Report
N68335-98-C-0140

A less portable (or lower level of portability) implementation would have all Operating
System interfaces, including inter-processor communications, isolated to a few
modules. These modules would have to be modified for a port to a different OS.

An undesirable situation is to have OS and IPC mechanisms “sprinkled” throughout
the application. Such an implementation becomes a nightmare when attempting to
port to another target/platform.

When applications are ported to new targets/platforms, it is also likely that additional
processing functionality will be added to the system. This might be in the form of
modifications to some of the existing processing, or it might be the addition of new
completely independent processing. A methodology for developing highly portable
applications will permit both of these scenarios without extensive rework of the existing
application software.

Reusable software must be target independent. Several levels of reusability should
be included. At the highest level, applications should be easily incorporated into new
or different platforms. As an example, the well developed algorithms for processing
sonobuoys (DIFAR, DICASS, etc.) should be readily incorporated into platforms that
are being developed primarily for new capabilities, such as dipping sonars. At an
intermediate level, functionality that is commonly used in many applications, such as
octave filtering, should be reusable in new applications. At the lowest level, a target
independent specification of common processing blocks should be defined.

Portable, reusable application software should therefore have the following
characteristics:

Operating System independence (or as a minimum, OS interfaces isolated to a
few modules).

A methodology which permits a target independent specification of the
processing, but, transparent to the user, provides links to libraries of optimized target
specific processing functions.

A methodology which permits “easy” modification of the processing and does
not require extensive hand rework.

A methodology which permits additional independent processing to be added
to the application without extensive rework.

A methodology which permits repartitioning and/or reassigning sections of the
processing without extensive rework.

The capability to incorporate reusable “blocks” defined at the “application,”
“subroutine,” and “library module” levels.

Management Communications & Control, Inc. 2 SBIR Phase | Final Technical Report
N68335-98-C-0140

Management Communications and Control, Inc. (MCCI) has developed a
methodology and a toolset for developing and maintaining application software that is
consistent with these characteristics, generating application software that is portable
and reusable.

This document will describe the MCCI Autocoding Toolset and the associated
portability and reuse methodology. Porting of applications which have been
developed for the AN/UYS-2 will be described in considerable detail.

2. Application Overview

The MCCI Autocoding Toolset has as its foundation the Processing Graph Method
(PGM). PGM is a Navy developed standard that can be used to specify signal |
processing (as well as some other types) applications using a data flow methodology.
PGM implements the Karp and Miller data flow paradigm. This seminal work is the
theoretical foundation for virtually all data flow methodologies. PGM is by far the most
mature and critically evaluated of all data flow methods. Despite its close association
with the AN/UYS-2, PGM has been maintained as a target independent data flow
language and is well suited for specification of applications for COTS targets. PGM
has both an iconic and a notational form.

2.1 Description of the Application

An application is specified as one or more PGM graphs, one or more Input/Output
Procedures, and a Command Program. Each graph represents independent
processing. The nodes in the application graphs specify the processing that is to be
performed by that portion of the application. The nodes in the graph reference either a
Domain Primitive or a user defined primitive that has been entered into the Autocoding
Toolset as a "custom” Domain Primitive. Domain Primitives provide for target
independent specification of the application. Since the graph has been specified
using Domain Primitives, the graph has been termed the Domain Primitive Application
Graph (DPAG). This term is used to distinguish this type of graph from other types of
graphs that arise as part of the autocoding process. The MCCI Autocoding Toolset
translates the PGM graphs into ‘C’ source code that incorporates calls to a vendor
supplied target specific library of optimized signal processing functions.

Input/Output Procedures provide a mechanism for connecting the graph(s) to data
sources and data sinks. For many target systems, the physical mechanism for this
connection is custom i/o boards. Consequently, the user must manually code the
Input/Output Procedures. A set of SRTS functions are provided which implement the
interface with graphs. The user must use these SRTS services as part of every 1/0
Procedure.

The Command Program provides the mechanism for controlling the application. This
typically involves an interface with some external device that for many applications
includes an operator interface. Individual graphs may be started, stopped, and re-
initialized. The values of variables that the graph(s) is using during execution may be
viewed (read) or modified (written) by the Command Program. Data sources and sinks
may be attached to (linked) or detached from (unlinked) individual graphs. The user

Management Communications & Control, Inc. 3 SBIR Phase | Final Technical Report
N68335-98-C-0140

must construct the Command Program. A set of services is provided which
implements the interface to graphs and to Input/Output Procedures.

A typical system is shown in Figure 1. Sensor data is processed according to the
processing specified in the signal processing graphs. The results of the processing
are typically shown on a display. An operator views the display and based on what is
observed possibly modifies or otherwise controls the processing by sending
messages to the Command Program. The Command Program translates operator
commands into actions that configure and control the application. These actions are
sent to the Graph Manager which modifies the application to conform to the desired
processing.

1 Sensors

\

Input Procedures
,Xj

Command

Graphs
Program P

Output Procedures

]
\J Display

Figure 1. Typical System

The Autocoding Toolset includes Run-Time System components that provide services
for graph execution, node scheduling, external control, queue management, and data
transfer. Calls to these services are automatically inserted into the source code
generated by the Autocoding Toolset.

2.2 Domain Primitives

The PGM graphs reference elements from an MCCI defined Domain Primitive Library
as the primitives underlying the nodes of the graphs. The elements of the Domain
Primitive Library are target independent kernel signal processing functions and data
flow control specifications. Domain Primitives are intended to match the level of
abstraction at which domain engineers design processes. The Domain Primitives
provide support for all legitimate combinations of input and output data modes,
structures, and multiple execution patterns. Domain Primitive Application Graphs
(DPAGS) is the term used to identify PGM graphs utilizing Domain Primitives.
Applications defined using DPAGs may be automatically translated to source code for

Management Communications & Control, Inc. 4 SBIR Phase | Final Technical Report
N68335-98-C-0140

any supported COTS processors without modification of the DPAGs. Existing
AN/UYS-2 graphs utilizing Q003 primitives may be easily converted to DPAGs. This
conversion process is defined in Section 6.2 Converting AN/UYS-2 Graphs.

As part of the Autocoding Toolset translation process, each Domain Primitive is
replaced by a sequence of one or more calls to elements of a vendor supplied library.
This library of functions has been optimized for the specific target processor. (If the
vendor does not provide an optimized library, a library of ‘C’ routines may be
substituted.) The information required to translate the Domain Primitives to the
sequence of vendor library elements is contained in Target Primitive Maps (TPMs) as
shown in Figure 2. Primitive Library Organization. In order to port the Autocoding
Toolset to a new vendor or to a new library, TPMs must be implemented by MCCI.
Additionally, Primitive Library Units (PLUs) must be constructed for each vendor library
element that is referenced by the set of TPMs. The primary information contained in
PLUs is the execution time expression for each target processor type. This information
is used in application execution simulation.

Domain
Primitives

TPMs for TPMs for TPMs for
Vend.or 1 Math Vendor 2 Math Vendor 3 Math
Library Library jbran

PLUs for
Vendor 3 Math
Library

Figure 2. Primitive Library Organization

2.3 Control Programs

Command Programs are the control programs (written in a Higher Order Language or
HOL) which configure/reconfigure the application based on events or external
commands, typically generated by an operator. Command programs may be written in
either ‘C’ or Ada or implemented as a graphical user interface (GUI). Calls to elements
of a Command Program Interface Library (which is provided as part of the Autocoding
Toolset) cause the Graph Manager component of the Run-Time System to invoke the
appropriate action. Command Programs are dependent upon both the application
and on the embedded host (particularly the host OS). The Command Program is
reusable for control of the application executing on target platforms from different
vendors, provided that the same host OS is used in the different systems.

Management Communications & Control, Inc. 5 SBIR Phase | Final Technical Report
N68335-98-C-0140

3. Autocoding Toolset

3.1 Overview

The Autocoding Toolset developed by Management Communications and Control, Inc.
(MCCI) is designed for large, complex signal processing applications that execute on
multiprocessor platforms. Run-time support services are provided for reconfiguring
and/or otherwise controlling the application and for supporting the execution of the
application. The Autocoding Toolset starts from a target independent specification of
the application and translates to a target dependent implementation. The target
independent specification is easily ported to other targets by re-translating the
application.

The MCCI Autocoding Toolset is used to translate signal processing applications that
have been specified using the Processing Graph Method (PGM) into a set of ‘C’
language source code files that implement the signal processing functionality. The
source code produced contains calls to functionality provided by the MCCI developed
Static Run-Time System (SRTS). The SRTS implements graph management, graph
execution, and queue management services which provide run-time support.

A high level diagram showing the components and some of the input required by the
components of the Autocoding Toolset is shown in Figure 3. There are three tools that
implement the core of the autocoding process. These are the Partition Builder, the
MPID Generator (MPIDGen), and the Application Generator (AG). Also shown in the
figure is the Static Run-Time System (SRTS) which provides run-time support services
for graph execution and control and for queue (data) management. The SRTS is
provided as a set of libraries. Calls to functions in these libraries that are required for
graph execution are automatically generated as part of the autocoding process.

The Autocoding Toolset also contains a performance simulator, GSMP, which
provides estimates of resource usage during execution of the application on the target
hardware, a tool (Architecture Definition Tool) for generating a display of the hardware
for use with the simulator and for generating a representation of architecture specific
information for use by the core components of the Autocoding Toolset, and a tool (CP
GUI) for generating sequences of commands that the Command Program would
normally issue for use in testing applications.

3.2 Autocoding Process

The user partitions each application graph, determining which combination of nodes
and subgraphs of the graph are to be grouped into a single schedulable entity. A
partition will normally be a connected segment of a DPAG, but disjoint segments are
permitted. The user provides the partitioning information using one of two methods
which are described later. The user assigns each partition to a particular processor.
More than one partition of a graph may be assigned to a particular processor.
Partitions from different graphs may be assigned to a particular processor. The
application is then ready for autocoding.

Management Communications & Control, Inc. 6 SBIR Phase | Final Technical Report
N68335-98-C-0140

] Processor
~| Descriptions

Architecture
Tool

(Host O

dependent)

Primitive
lg:f":f:: c‘:‘d Graph Value Output Command
Sets Procedures Program
Subgraphs

Y

Y

10P Application
Description | | Description
Partition
Builder Equivalent
Application
Graph
Partition Partition
Graphs GV Sets
_»| MPIDGen Application
MPID Generator
nformation
SIDs MPIDs Make Make ﬁ“Node
Files Files Tasks
Document-
ation

Libs

SRTS Lib

Configuration

File

Log

w

Yy

GSMP

Performance
Simulation

Run-Time
Execution

|

Y

Cp
GUI

Commands

Figure 3. Diagram of the Autocoding Toolset

Management Communications & Control, Inc.

7

SBIR Phase | Final Technical Report

N68335-98-C-0140

3.2.1 Partition Builder

The Partition Builder processes the partitioning information to form the partitions. A
partition is a subset of the nodes of a DPAG that will become a single schedulable
entity on a target processor. A target processor may have more than one partition
assigned to it. A graph for each unique partition is generated by the Partition Builder.
These graphs are called Partition Graphs.

An Equivalent Application Graph (EAG) is formed by replacing each partition in the
DPAG with a single equivalent node that represents the partition. The primitive
underlying each node in an EAG implements a control flow version of the processing
for the partition represented by the node. The primitives are generated by the tool
called MPIDGen from the Partition Graphs. MPIDGen is used in the next step of the
autocoding process.

3.2.2 MPID Generator (MPIDGen)

Each partition graph is translated by MPIDGen into ‘C’ source code statements that
implement a control flow version of the processing described by the partition graph.
The partition graph is parsed to ensure a valid, error free, executable and translatable
graph. Graph analysis translates the data flow graph to execution sequence(s)
implementing graph transient and cyclic behavior for each set of enumerated control
values. This analysis provides the specification for a control flow program
implementing the MPID. A memory map is generated mapping queue operations into
a set of fixed buffer addresses. The control flow version has been termed a MPID, an
acronym for Multiprocessor Primitive Interface Description. This control flow
implementation references primitives from a vendor library of signal processing
functions for a particular target processor type such as an Intel i860 or a more standard
DSP such as an Analog Devices 21060. Incorporating this type of library provides for
efficient execution of the processing as these libraries have been optimized by the
library vendor for the particular target processor. The source code generated by
MPIDGen also includes calls to services provided by the Static Run-Time System for
activities such as reading and writing queues.

A test utility executes the MPID as a single node application for unit testing on either a
single target processor or the development workstation. Comparison of the
processing results of the unit testing with corresponding results from an executable
behavior model validates the autocoded translation.

3.2.3 Application Generator

When all of the Partition Graphs have been translated into MPIDs, the Equivalent
Application Graphs (EAGs) for the entire application are translated by the Application
Generator (AG) tool into ‘C’ source code and data structures that interface with the
graph executing Static Run-Time System (SRTS). The Application Generator
accesses the assignment information to assign each partition and therefore each
equivalent node of each EAG to an actual processor. A node task wrapper is
generated for each equivalent node (i.e., partition) that has been assigned to a

Management Communications & Control, Inc. 8 SBIR Phase | Final Technical Report
N68335-98-C-0140

processor. This node task wrapper instantiates and calls the MPID function which was
generated for the partition corresponding to the equivalent node.

In addition to a node task wrapper for each equivalent node, the Application Generator
creates at least one thread manager for each processor in the architecture that has at
least one partition assigned to it. Each thread manager maintains a list of equivalent
nodes which have been assigned to the corresponding processor. The number of
thread managers created for a processor is dependent upon which Operating System
is used. For the MCOS implementation, a thread manager is created for each
processor for each graph that has equivalent nodes assigned to that processor. At
run-time, it is the thread manager task that actually creates the equivalent nodes
-associated with the graphs in the application.

The Application Generator also generates architecture specific files required by the
Operating System and/or target specific cross-compiler. In addition, the Application
Generator creates a file which specifies the application to the Graph Manager
component of the SRTS.

3.2.4 Static Run-Time System

The Static Run-Time System (SRTS) consists of a Graph Manager and a set of graph
execution support services. The Graph Manager provides the interface between the
Command Program and the rest of the application. All application configuration
messages from the Command Program are sent to the Graph Manager which
processes the messages and invokes the processing associated with the message.
The graph execution support services provide initialization functions, queue data
management services, node scheduling services, and services for communication with
the Graph Manager. Calls to the services are embedded into the source code
generated by the autocoding process.

3.3 Ancillary Support Tools

3.3.1 Command Program Graphical User Interface

The Command Program Graphical User Interface (CP GUI) provides the user with an
easy to use Command Program interface. The CP GUI can be used to control
complete applications or portions of the application without having to construct a
Command Program. Since the CP GUI implements all of the application control
functions of the Command Program using a menu interface, it can be especially useful
during the development and unit testing phase when the interface to the application
may be changing. With the CP GUI, the user can issue single commands or construct
sequences of commands as macros. The macros form the basis for generating either
components of the final Command Program or Command Program scripts which can
be interfaced to a custom GUI.

3.3.2 Performance Simulator

The performance simulator, GSMP, uses a model of the hardware, a model of the
Static Run-Time System, models of the partitions (generated by MPIDGen), and a

Management Communications & Control, Inc. 9 SBIR Phase | Final Technical Report
N68335-98-C-0140

description of the application (generated by Application Generator) to estimate the
resource usage encountered during the execution of the application on the target
platform. During simulation, resource usage is visible via a display. Many resource
usage problems are easy to detect by watching the simulation. A statistics report is
also generated. Control of the application for GSMP simulation is via the CP GUI, and
macros generated by the CP GUI for test purposes can be reused, or macros
developed for simulation can be reused during test. Additionally, GSMP can playback
logs created during execution of the application on the actual target hardware,
providing a high degree of visibility into application execution.

3.3.3 Architecture Definition Tool

The Architecture Definition Tool permits the user to define or modify target processor
types, define the target architecture in a format compatible with the Autocoding
Toolset, and define a graphical view of the target architecture for use with GSMP.

3.3.4 Graph Translation Tool (GrTT)

An executable Ada partition behavior model may be automatically generated for each
partition using GrTT. Behavior models will exhibit step-by-step execution behavior that
is identical to the autocoded partition with numerical processing results that may be
compared to corresponding queue contents in the executable architecture graph. Test
vectors for validation on the target architecture may be generated. GrTT test vectors
can be used to verify design requirements capture and to validate partition autocoded
programs.

3.3.5 Virtual Design Machine (VDM)

The UNIX based network target planned for SBIR N94-165 Phase Il will serve as a
high capacity functional simulator as well as an operational target.

4. Productivity

Utilizing MCCI's Autocoding Toolset to develop applications enables users to realize
an order of magnitude reduction in software development cost and a four fold
decrease in development times. Code with run-time performance that is comparable
to hand generated code is produced. A refereed evaluation of the productivity
enhancement our tools provide was conducted by MIT Lincoln Laboratory as part of
the RASSP program.

4.1 Benchmarking of the MCCI Autocoding Toolset

The RASSP program demonstrated its goal of improving embedded signal processor
development productivity by a factor of four through benchmarking MCCl’'s Autocoding
Toolset. A Synthetic Aperture Radar (SAR) signal processing algorithm developed by
MIT Lincoln Laboratory was used for tool and methodology testing. The benchmark
was initially implemented using traditional methods to establish a productivity
baseline. Productivity enhancements realized with the Autocoding Toolset were
formally evaluated by Lincoln Laboratory and compared with the baseline. MCCI also

Management Communications & Control, Inc. 10 SBIR Phase | Final Technical Report
N68335-98-C-0140

used the benchmark algorithm to demonstrate performance of the GrTT behavior
modeling tool developed under the RASSP technology base effort.

The SAR benchmark software allocation was implemented with an alpha version of

the Autocoding Toolset.

Figure 4 shows the PGM DPAG. Figure 5 shows graphs of the range and azimuth
partitions and the equivalent application graph created by the Partition Builder. Each
unique MPID was autocoded and unit tested by comparing its results to test vectors
generated by the behavior model and algorithm simulation tools. Figure 6 shows a
comparison of behavior model (GrTT) output for the range partition graph and the
corresponding vector from the MPID unit test.

z
N

N_FFT

NFFTAZ

NFFT_AZ

I

g

]

]

f

vMUL

)é

SAR

The SAR benchmark processing
requirements were allocated to hardware
processing requirements and a software
architecture. The software allocation
included range and azimuth processing
separated by a corner turn. SAR images
were formed from 1K range returns of 2K
complex words each. The required frame
rate is one second, requiring support of 2
MHz complex word input and output rates. A
latency constraint of three seconds was also
required. Range processing transformed
each range return into a complex spectrum
sorting return by bearing dependent Doppler.
Corner turning transposed the range
processed data into bearing range
alignment. Azimuth processing convolved
the range returns for each bearing with a
Doppler/range compensation kernel. The
processing load was approximately 500
Mflops.

Figure 4. PGM Domain Primitive Application Graph for SAR Benchmark

Management Communications & Control, Inc.

11 SBIR Phase | Final Technical Report
N68335-98-C-0140

&

F_4_YRANGE|

S_NFFT
D_VFILL
BNPAZ F_4FILLP

F_A_FILL|

8_PAZ
D_VMUL
8_RCSMU F_4_WINDO,

F_4_WIND|

\&/

¢

4

\&/

F
v

&
B

il
®

Il

€ g

H
o~

Figure 5. Range and Azimuth Partition Graphs and the Equivalent
Application Graph for SAR Benchmark

Partition graphs are autocoded into executable programs encapsulated in
nodes of the equivalent application graph. The equivalent application
graph is autocoded into the run-time image of the application.

4000 MPID O_B1_0(rea!) 4000 GrTT O_B1_0 (real)

1 Diff O_B1_0 (real)
o 2 ” I [l
I I | | N
-4000

GrTT O_B1_0 (imag)

-4000

MPID O_B1_0 (imag) 4°%°

Diff O_B1_0 (imag)

0
-3000 -3000

Figure 6. Comparison of GrTT Ada Behavior Model and MPID Unit Test
Output Vectors

Management Communications & Control, Inc. 12 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Processing performance was comparable to the hand generated baseline. Significant
productivity improvements were demonstrated. Table 1 lists the comparisons between
the handcoded baseline and the results of autocoding. Test results show comparable

computational performance between baseline and autocoded implementations and
significant productivity enhancements. A factor of ten was achieved in reducing
development time including the time spent iterating the design. The development time
recorded with the autocoding tools includes the tool use learning curve and the
several design iterations. Significant further productivity improvements are expected
with the commercial release version of the Autocoding Toolset.

Measured Hand- Autocoded Comment
item Coded
Lines of 2361 3855 a. user must generate SPGN for Domain Primitive Graph
Code b. RTS not included, MYA port
c. IOP not included (500 LOC)
Perform- <7 sec/sec 6.85 sec/sec | a. 8 Nodes needed for memory
ance 7 i860 Nodes | 8 i860 Nodes | b. Measured loading supports 7 node partitioning
Memory 32M 85.5M a. Autocoding tool limitation
29.5M (6/96) | b. Upgrade in beta version
Develop- 8 MM 0.75 MM a. 10 X improvement
ment Time b. includes learning time - should improve in future releases
Test Time 2.5 MM 0.5 MM a. 5 X improvement
Table 1. Comparison of Autocoding with Handcoding

4.2 MIT Lincoln Laboratory's Software Cost Model

The reduction in cost and schedule impacts of the productivity improvements
demonstrated are illustrated in Figure 7. These charts have been excerpted from the
viewgraph presentation, "Modeling RASSP Benefits,” of an independent study of
RASSP productivity improvements by Dr. James C. Anderson of MIT Lincoln
Laboratory. Time and cost data measured during RASSP benchmarking were
analyzed using COCOMO (Constructive Cost Model) and REVIC (Revised
Intermediate COCOMO) to develop the comparison of developing a large real-time
processing software system using RASSP HW/SW codesign methodology (PGM

based executable requirements and tools, virtual prototyping, and autocoding) with the
standard six phase development program. The cost model results are dramatic; a 3.5
reduction in schedule and 7.4 reduction in cost are predicted. If the sponsor provides
executable requirements in the form of reusable graphs, the model predicts a factor of
9.09 reduction in cost and a factor of 6.25 reduction in schedule. This latter case

typifies life cycle maintenance and P3| insertion of new processing technology in the
Autocoding Toolset.

13 SBIR Phase 1 Final Technical Report

N68335-98-C-0140

Management Communications & Control, Inc.

Effort Standard Practice

30) o4 Std Practice

o

[Integration
ScTest

Schedule
% Std Practice

20 Effort
% Std Practice HW/SW Codesign, Tools, Methodology, Executable
Requirements, Virtual Prototype & Autocoding

Modeling RASSP Benetits
James C. Anderson

MIT Lincoln Laboratory
28 February 1997

Prototype

Schedule

, % Std Practice

) P & 100

Figure 7. Cost and Schedule Comparison of Software Development
Using RASSP PGM Based HW/SW Codesign Methodology and Tools vs.
Standard Practice

5. Portability and Reusability

Domain Primitive Application Graphs may be reused on any target platform that is
supported by the MCCI Autocoding Toolset. Reuse involves specification of the new
hardware architecture, possibly repartitioning of the application graphs for the new
target, and automated generation of the application. New hardware architectures may
be technology upgrades of a vendor's boards or designs using boards from a different
vendor. HOL command programs may be reused on new hosts for which target
platform OS support or interface exists. Reuse capability makes the graphical
application specifications and HOL control programs become the high value, reuse
software. Reuse will also minimize program dependence on any particular hardware
vendor. The existing base of AN/UYS-2 graphical applications may be readily added
to the reuse library after porting the graphs to be Domain Primitive Graphs, making
them usable on all supported hardware targets. Ease of reuse will radically reduce
software life cycle costs.

5.1 Porting the Autocoding Toolset to New Target Platforms

Porting of the Autocoding Toolset requires effort at several levels. First, the Target
Primitive Maps (discussed in Section 2.2 Domain Primitives) must be implemented
whenever a new vendor supplied library is to be incorporated into the Autocoding
Toolset. The API to a particular vendor’s library is usually not dependent upon the
type of target processor since vendors are concerned with compatibility of legacy
code. However, the API is normally different. Second, execution time estimates for
elements of the vendor supplied library must be entered in PLUs (discussed in Section
2.2 Domain Primitives) in order to simulate applications. Execution time estimates are
dependent upon target processor type (e.g., PowerPC, SHARC, etc.). Finally, the

Management Communications & Control, Inc. 14 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Static Run-Time System (SRTS) must be modified to use elements of the target
platform multiprocessor Operating System. Mechanisms for messaging, semaphoring,
shared memory constructs, and data transfers are dependent upon the facilities of the
OS. The changes required for the SRTS are isolated to a low level, comparable to
device drivers.

MCCI has been following the ARPA sponsored VSIP program. VSIP is developing a
specification for a library of vector, signal processing, and imaging functions that in
many respects parallels the Domain Primitive Library. VSIP is also implementing a
reference version of the library and performance versions of a subset of the library. It
is a goal of VSIP to have vendors implement versions of VSIP that have been
optimized for their target processors and platforms.

Incorporating the VSIP library, including the vendor optimized target specific versions,
into the Autocoding Toolset can be achieved using an organization shown in Figure 8.
The Domain Primitive Library would then support, without any modifications, any target
processor that had a VSIP compliant library. Some effort would be required to
incorporate the execution time expressions necessary for performance simulation. [If
timing expressions were provided, this effort would be on the order of one week.

Under a separate program, MCCI has been investigating the impact of incorporating
VSIP into the Autocoding Toolset and the impact VSIP would have on execution
efficiency. The VSIP API uses an object oriented approach with data being
represented as views as opposed to the standard ‘C’ approach of memory locations.
The object oriented approach does add overhead, in both increased execution time
and increased memory usage. The overhead is dependent upon the application;
however, it is also based on the particular VSIP implementation being used.
Preliminary measurements indicate that the overhead should be tolerable for most
systems.

Domain
Primitives

TPMsfor
Vendor 1 Math
Library

TPMs for
Vendor 2 Math

TPMs for
VSIP Math

_VSIP Lbrayy = _
VSIP 'C Math Vendor 1VSIP Vendor2 VSIP
Lirary Compliant Library] ¥Compliant Library,

Figure 8. Primitive Library Organization Extended for VSIP

Management Communications & Control, Inc. 15 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

The importance of having target specific optimized libraries cannot be overstated. It is
these modules that provide the core of high throughput. Most current compilers do
well to provide executables that are three to four times slower than the optimized
library elements. This is deemed unacceptable, since it translates into three or four
times more hardware with the associated increases in cost, weight, power, space, and
maintenance, and the decreased reliability.

5.2 Porting the Run-Time System to New Target Platforms

The MCCI graph executing Static Run-Time System (SRTS) implements a Graph
Manager, which interfaces to the Command program for external control of the
application, and a set of services which provides for queue and data management and
for determination of when a node is ready for execution. The SRTS implements a
standardized Application Program Interface (API) and calls to the services are
embedded into the application specific source code generated by the Autocoding
Toolset. The SRTS services interface with the underlying Operating System for task
scheduling, Inter-Process Communication, and other operations normally associated
with OS services.

In order to understand the MCCI Operating System requirements, one must first
understand the hardware model. In the “normal” hardware configuration, there is an
embedded host processor and one or more groups of “signal processors.” (It is
possible to configure the system such that a host is not required.) Each Group of
“signal processors” can consist of one or more processor boards typically consisting of
16 or more processors. An application consists of one or more signal processing
graphs, 1/0 Procedures, and a Command Program. A graph resides entirely within a
Group. Data from a graph can be piped to another graph. The graph receiving the
data may be located in the same Group or in another Group.

The MCCI graph executing Run-Time System requires minimal OS support. The OS
must span all processors within a Group. The expected services are:

a. Process/Thread Scheduling (including priority preemption, if possible). The
process/thread scheduling may be two level (such as Mercury provides with both
“process” and POSIX thread support) or a single task level (such as SPOX provides).

b. Semaphores for signaling/synchronizing both locally and within the Group. Both
blocking and non-blocking access functions are required. Time-outs are highly
desirable.

c. Messaging (mailbox or socket) both processor local and within the Group. Both
blocking and non-blocking functions are required. Time-outs are highly desirable.

d. Data transfer routines for reading and for writing data locally and within the Group.
The writing services must include provisions to block until the transfer has completed
and the data has been stored in the memory location(s). These services should use

the quickest transfer mechanism available. If the architecture supports a shared

Management Communications & Control, Inc. 16 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

memory model, these routines can be rather simple. If the architecture does not
support a shared memory model, these routines become more complex.

e. Dynamic memory allocation functions (alloc and free) must be provided.

f. If SHARCSs are the target processor, it is highly desirable that code overlay support
be provided by both the OS and the compiler/linker. This is due to the limited on-chip
memory and the fact that there is a single off-chip bus.

There must be a method of messaging that exists between the host and at least one
processor within each Group. This messaging may be socket or mailbox. For
example, with the Mercury hardware, MCOS sockets are used for this type of
communications. Mercury provides the MCOS drivers for a variety of Sparc boards
executing Solaris.

There must also be a mechanism for sending data to and receiving data from any 1/O
boards that interface with the external world. For example, Mercury provides services
to interface boards with the Raceway.

A run-time loading capability is highly desirable. This permits loading of new tasks
during run-time reconfiguration. If this is not provided, then the load image for each
processor must contain all code that can be executed on that processor for all
configurations of that application. Some loader must be supplied either as part of the
OS or as part of the Board Support Package.

There must be some method of accessing information so that the SRTS (during MCCI
porting to the platform) and applications can be debugged. It would be nice to have
stdio available from the signal processors. If stdio is not available from the signal
processors, file i/o and/or real-time printf capability from the signal processors would
prove very useful. As a minimum, post-mortem printf (e.g., from a trace buffer) must be
provided.

MCCI has been following the Navy sponsored Common Operating Environment (COE)
with interest. If a common OS API could be defined, the SRTS could be modified to
the API and not have to ported for each platform. Additionally, under a separate
program, MCCI will be investigating a MPI compliant interface. Assuming that an
efficient MPI compliant version of the SRTS can be developed, SRTS ports would not
be required for platforms that had MPI capability.

5.3 Reusable Domain Primitive Application Graphs

The reuse strategy is based on the portability of Domain Primitive Application Graphs,
DPAGs. DPAGs are completely target independent PGM data flow graph
specifications of signal and data processes. The middleware interfaces to target
specific computational routines incorporated in the Autocoding Toolset and the run-
time interfaces to target operating systems make it possible to generate executable
code implementing the DPAG specifications on all family targets. [f properly exploited,

Management Communications & Control, Inc. 17 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

this reuse capability can profoundly affect acquisition and life cycle support strategies
for airborne signal processing systems to the advantage of the Navy.

5.4 HOL Control Program Reuse

The HOL control programs, programs invoking PGM command procedures with calls
to elements of the Command Program Interface Library, may be readily reused. The
Command Procedure Interface Library is available in ‘C’, and could be readily
extended for a version with the routines encapsulated in Ada. Command programs
are specific to the application and possibly the operating system of the embedded
host. Provided the formal inputs to the application are not changed in porting it to a
new target, the control program will be reusable with the new target if the same host
OS is used. Control programs themselves may be ported to a new host provided the
target interface support exists. This support is some means of messaging between the
host and the target (typically using a form of sockets).

6. Reuse of Existing AN/UYS-2 Applications

The Autocoding Toolset reuse capability offers the opportunity to reuse the $100M
plus AN/UYS-2 code base of PGM application graphs at minimal costs.

6.1 AN/UYS-2 Command Programs

The core functionality of a Command Program is to translate commands from an
external source such as an operator console into actions that configure/reconfigure the
application.

While the potential to convert AN/UYS-2 Command Programs exists, there are many
issues involved. The first is that AN/UYS-2 Command Programs were written in Ada
for execution on a 68030 processor. The cross compiler that was used is no longer
supported. Porting Ada to new targets is not as simple as a recompile.

Additionally, while both the AN/UYS-2 and the MCCI Autocoding Toolset are based on
PGM, the implementations have differences. The AN/UYS-2 implementation requires
the Command Program to perform system level operations such as creating mailboxes
for communications with Input Output Procedures (IOPs). The AN/UYS-2 implements
IOPs as Graph Support Programs. Each Graph Support Program must communicate
with the Command Program. The MCCI implementation requires communication with
the Graph Manager component of the SRTS only. Also, the AN/UYS-2 implementation
uses a concept called Graph Support Nodes for access to queue or graph variable
data by the Command Program or IOP. Graph Support Nodes are not defined in the
PGM Specification, and they are not used or supported by MCCI.

Thus, if it is desired to attempt to reuse AN/UYS-2 Command Programs, two porting
issues exist. (1) The Command Program will have to be recompiled using the GNAT
or some other Ada compiler. Compiler differences will have to be resolved using
standard debugging and code revision procedures. (2) Calls to the AN/UYS-2 GrM
interface must be replaced with equivalent calls to the Command Program Interface
Library elements. For the most part, this is a straightforward substitution of

Management Communications & Control, Inc. 18 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

semantically identical procedure calls. There is some Command Program functionality
introduced into the AT&T implementation that is not supported in the PGM specification
typically dealing with Graph Support Nodes and mailboxes. MCCI could add support
for these as required so that Command Program Interface Library call substitution may
be used for all AN/UYS-2 GrM interface functions. Some of the new support functions
would be simple stubs, others would be fairly complex.

6.2 Converting AN/UYS-2 Graphs

AN/UYS-2 graphs may be readily converted into DPAGs with simple graph editing.
Node statements for Q003 primitives must be edited into node statements for Domain
Primitives. In general, there is a many to one mapping of Q003 primitives into Domain
Primitives. To anyone familiar with AN/UYS-2 programming, the transformation will be
intuitive. The editing may be accomplished with the DSPGraph Tool or with a simple
text editor. Once converted to DPAGs, the AN/UYS-2 graphs may be autocoded for
any architecture that the Autocoding Toolset supports.

MCCI converted the AN/UYS-2 DICASS graph to a DPAG implementation as part of
this project. The top level graph is shown in Figure 9. The expanded graph contains
on the order of 609 nodes. The conversion results are described in Section 6.4
DICASS Conversion. Based on the conversion process performed on this application,
AN/UYS-2 graphs and referenced subgraphs can be readily converted to Domain
Primitive Graphs by performing the following steps:

1. Convert the primitive referenced (pPrRIMITIVE =) by each sNODE statement from a
Q003 primitive name to a Domain Primitive name. A cross reference table of Q003
Primitives to Domain Primitives can be found in Appendix A. For some conversions,
the parameter lists do not match. A cross reference table containing the parameter
lists can be found in Appendix B. For some primitives, more than one Domain
Primitive can be selected. To select the “proper” one, the user should understand the
functionality of the Q003 primitive in the context it is being used and should
understand the functionality of each of the Domain Primitive choices.

If a node in the Q003 graph references a chain, there will be no Domain Primitive
equivalent. Instead, the procedure of the next section should be followed.

2. If there is no Domain Primitive equivalent for the Q003 primitive, there are two
options. A request can be sent to MCCI to add a new Domain Primitive. Alternatively,
one can construct a ‘C’ procedure and encapsulate it as a “Custom” Domain Primitive
as described in the user manuals for the MCCI Autocoding Toolset.

3. The AN/UYS-2 uses a 16 bit representation for single precision and a 32 bit
representation for double precision. Most newer targets use 32 bit for single precision
and 64 bit for double precision. Additionally, many newer targets do not have
hardware support for double precision (64 bit) and only provide software emulation
which does not execute quickly. Converting AN/UYS-2 double precision to 32 bit
single precision should therefore be performed by modifying the mode declarations in
the graph (e.g., DFLOAT is modified to FLOAT).

Management Communications & Control, Inc. 19 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Figure 9. DICASS Graph

Management Communications & Control, Inc. 20 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

6.3 AN/UYS-2 Chains

Chains written for the AN/UYS-2 require special treatment to port them to the
architecture family. Two approaches are possible; one is to reverse engineer the
chain from the PID language implementation, and the other is to use the graphical
representation, if it exists.

Chains for which there is no equivalent graphical specification may be handled in one
of several approaches. (1) A graphical specification may be reverse engineered from
the PID language. MCCI reverse engineered several graphical representation of
ALFS PIDs during the PIDGen program. Once a graph is obtained, the chain may be
handled as described above. (2) The PID language program may be rewritten as a ‘C’
program. Target specific math library calls may be substituted for EO02 microcoded
procedure calls. Since PID language is a subset of ‘C’, this may be the easiest path
for chains for which graphical specifications do not exist. A planned encapsulation
tool will provide for their incorporation in the Domain Primitive Library as user
primitives.

A graphical representation of the chain’s processing may be entered into the reuse
library as DPAGs. Subgraphs referring to the chain’s DPAG may be substituted for the
chain node in the top level graphs. For P3UIV chains that are specified in graphical
format, this is the preferred approach. If the graphical format is not available, it may be
possible to locate documentation containing a pictorial representation from which the
graph can be reconstructed. NEPs and modes must be added to the iconic
representation in the P3UIV chain specification to make them complete DPAGs and
nodes must be converted to reference Domain Primitives. This entire procedure is a
relatively straightforward task as detailed below.

Some, if not all, existing AN/UYS-2 applications, contain one or more chains that will
have to be converted for inclusion in the ported application. A chain was constructed
from a segment of a graph. Chains increase the execution efficiency by increasing the
processing performed by a schedulable entity (i.e., the node). In many respects,
chains and MPIDs are similar.

In order to convert a chain for use with the MCCI implementation, the following process
is suggested. After the process has been described, an example will be shown. It is
assumed that the reader (and most definitely the person doing the conversion) is
familiar with PGM.

6.3.1 Creating the Graph from the Chain Description

The first two steps are to 1) create a graph containing nodes with underlying Q003
primitives and 2) convert the “Q003” graph to a “Domain Primitive” graph.

1. Beginning with the description of the chain, construct a graph using Q003
primitives. This is a relatively straightforward procedure using the written description
of the chain and the pictorial pseudo-graph diagram given in the description. The
diagram should contain each of the nodes, the pr1M_1IN and prRIM_oUT lists for each

Management Communications & Control, Inc. 21 SBIR Phase 1 Final Technical Report
: N68335-98-C-0140

node, and the queue connectivity between nodes. The Node Execution Parameters
(threshold, read, offset, and consume) are not given, and they must be inferred from
the processing of the chain. -

Additionally, the graph header must be derived. Determining the formal parameters is
made by examining the prIM_IN and prRIM_oUT lists for the chain. However, there is a
distinction between a snODE statement description and a $GrRapH description. The $NODE
statements have prRIM_IN and pRIM_oOUT lists, while $sSUBGRAPH statements have G1Ips,
VARs, INPUTQs, and ouTpUTQs. Determining which of the prRIM_IN and PRIM_OUT
parameters are the formal input and output queues is normally straightforward. More
difficult is determining which of the other prRIM_1IN and pPrIM_ouT parameters should be
G1ps and which should be vars. At this point, a best guess based on usage of the
parameter is suitable, as the determination will be revisited in a later step in the
conversion process.

2. Convert the graph from one using Q003 primitives to one using Domain Primitives.
This procedure is straightforward and is detailed elsewhere in this document. (See
Section 6.2 Converting AN/UYS-2 Graphs.)

6.3.2 Modifications Based on Application Specific Use

The next steps pertain to modifying the calling graph and to incorporating application
specific usage information into the graph implementing the chain.

3. Modify the calling graph by replacing the node statement with a subgraph
statement. This step can be tricky on occasion due to the mismatch between $NODE
statements and $suBGRaPH statements noted previously. For the moment, ignore any
p1P_1IN and p1p_ourT statements. Using the graph from step 2 as a template in
conjunction with the actual usage (i.e., GIPs and VARSs) of entities in the $NODE
statement, create the SUBGRAPH statement. Modify the graph of step 2 as
appropriate, declaring the entities as either GIps or vars.

4. Next, any application specific usage related information must be incorporated. This
includes accounting for any p1p_1Ns and/or PIP_OUTs, valves and expressions that are
part of the sNoDE statement. The ASNP chain example described below contains these
types of application specific information and describes how the information can be
incorporated.

6.3.3 CHN_ASNP Example

The conversion process for CHN_ASNP as used by the cwascan graph in the picass
application is shown as an example. The Chain Description is contained in Appendix
A. From this description, the Q003 graph implementing the chain is developed.

Graph Body:
The Graph Body is constructed directly from the chain description. First declare the

local queues. This information is taken directly from the chain description.

Management Communications & Control, Inc. 22 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

%% LOCAL QUEUE LIST FROM CHAIN DESCRIPTION
$QUEUE (X1 : DCFLOAT)
SQUEUE (X2 : DCFLOAT)
$QUEUE (X3 : DCFLOAT)
SQUEUE (X4 : DCFLOAT)
$QUEUE (X5 : DFLOAT)
$QUEUE (X6 : DCFLOAT)
$QUEUE (X7 : DCFLOAT)
$QUEUE (X8 : DCFLOAT)
$QUEUE(X9 : DFLOAT)
SQUEUE(X10 : DFLOAT)
$QUEUE (X11 : INT)

Next construct the node statements, ignoring Node Execution Parameter (NEp) values,
and declaring variables (GIps or vaRs) as needed. Most of this information is taken
directly from the chain description figure by referring to the tables associated with each
node. Construction of two nodes, one referring to Q003 primitive prc_rcTr and one
referring to Q003 primitive pcp_spL is shown. A node name must be assigned to each
node. This name can be anything the user wishes, but each name must be unique.
For some parameters, it is useful to construct a variable. In the second node, the fourth
parameter, which is an array (FrTsz, 1}, will be replaced by parameter spL1_BLS.

%NODE (FCTR

PRIMITIVE = DFC_FCTR
PRIM_IN = DASC*FFTSZ,
2,
1,
BB,

FAMILY [OMNI, CRD]
THRESHOLD = 2?7
PRIM OUT = FAMILY[X1]
)

SNODE (SPL1

PRIMITIVE = DCP_SPL

PIP_IN = ASNP_VALVE

PRIM_IN = DASC*FFTSZ,
1,
SPL1_BLS,

X1 THRESHOLD = ?°?°?
PRIM OUT = FAMILY[X2] VARIABLE VALVE = ASNP_VALVE

)

% Need to declare variable SPL1_BLS
GIP(SPL1_BLS : INT ARRAY (2) INITIALIZE TO {FFTSZ, 1})

The other $NODE statements are constructed in a similar fashion.
Graph Header
The Graph Header is constructed next. The information for this step is contained in the

Parameter List, augmented by the information in the Parameter Table. The Graph
Name and the 1npPuTQ and ouTpuTQ lists are usually easy to construct.

Management Communications & Control, Inc. 23 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

%GRAPH (ASNP
INPUTQ = MEF : DFLOAT,
OMNI : DCFLOAT,
CARD : DCFLOAT
OUTPUTQ = ASOT : INT V_ARRAY (KK))

The c1P and var lists can be tricky, in that it is sometimes hard to determine if a
parameter should be a start-time parameter (GIP) or run-time parameter (VAR). At this
point, a best guess only is required. The lists will be revisited during a subsequent
step.

GIP =
DASC : INT,
NAS : INT,
NS : INT,
FFTSZ : INT,
NIF : INT,
NFSS : INT,
BB : INT,
ASWIND : INT ARRAY(2),
REQ : DFLOAT ARRAY (6),
MNA : INT ARRAY(2),
DM1 ¢ INT,
DM2 : INT,
%% V Array Size on output queue
%% nominally max will be KK = (NS*NFSS)/DASC + 8
%%
KK : INT
VAR = ASNP_VALVE : INT,
ASGN : DFLOAT,

HEADER : INT ARRAY (8)

Note that a parameter, kx, for the maximum size of the v_array output queue was
added to the parameter list. This is to avoid hard coding the size into the ouTpPuTQ
declaration.

At this point, the NEP values are still required. From the Chain Description, it is seen
that multiple execution depends upon the expression: NE = NS/DASC.

The nominal input data amount into brc_FCTR is DASC*FFTSZ. If we multiply this amount
by nE, we obtain the threshold amount for INPUTQs OMNI and CARD., namely NS*FFTSzZ.
The nNEPs for the other nodes in the graph can be similarly derived.

Putting together all the pieces, we obtain the Q003 Primitive graph:

$GRAPH (ASNP $%%%%% CHN_ASNP Q003 wversion
GIP =

DASC : INT,
NAS : INT,
NS : INT,
FFTSZ : INT,
NIF ¢ INT,
NFSS : INT,

Management Communications & Control, Inc. 24 SBIR Phase 1 Final Technical Report

N68335-98-C-0140

VAR

INPUTQ

OUTPUTQ

)

BB : INT,
ASWIND : INT ARRAY(2),

REQ : DFLOAT ARRAY (6),
MNA : INT ARRAY(2),
DM1 ¢ INT,

DM2 ¢ INT,

KK : INT

o o oe

%
%
%

ASNP_VALVE: INT,

ASGN : DFLOAT,

HEADER : INT ARRAY (8)
MEF : DFLOAT,

OMNI : DCFLOAT,

CARD : DCFLOAT

ASOT : INT V_ARRAY (KK)

V Array Size on output queue

n
(

ominally max will be KK =
NS*NFSS) /DASC + 8

%GIP(SPL1_BLS : INT ARRAY(2) INITIALIZE TO {FFTSZ, 1})
%GIP(SPL2_BLS : INT ARRAY (2) INITIALIZE TO {NAS, 1})

%QUEUE (X1 : DCFLOAT)
%QUEUE (X2 : DCFLOAT)
%QUEUE (X3 : DCFLOAT)
%QUEUE (X4 : DCFLOAT)
%QUEUE (X5 : DFLOAT)
%QUEUE (X6 : DCFLOAT)
%QUEUE (X7 : DCFLOAT)
¥QUEUE (X8 : DCFLOAT)
%QUEUE (X9 : DFLOAT)
%QUEUE (X10 : DFLOAT)
JQUEUE (X11 INT)
SNODE (FCTR
PRIMITIVE = DFC_FCTR
PRIM_IN = DASC*FFTSZ,
2,
1,
BB,
FAMILY [OMNI, CRD]
THRESHOLD = NS*FFTSZ
PRIM_OUT = FAMILY[X1]
)
%NODE (SPL1
PRIMITIVE = DCP_SPL
PIP_IN = ASNP_VALVE
PRIM_IN = DASC*FFTSZ,
1,
SPL1_BLS,
X1 THRESHOLD = NS*FFTSZ
PRIM_OUT = FAMILY[X2] VARIABLE VALVE =

)

$NODE (SPL2

PRIMITIVE = DCP_SPL
PIP_IN = ASNP_VALVE
PRIM _IN = DASC*NAS,
1,
Management Communications & Control, Inc. 25

A

SNP_VALVE

SBIR Phase 1 Final Technical Report
N68335-98-C-0140

PRIM_OUT
)

%NODE (REORD

SPL2_BLS,
MEF THRESHOLD = NS*NAS

FAMILY[X5] VARIABLE VALVE = ASNP_VALVE

PRIMITIVE = DFC_REORD
PRIM_IN = FFTSZ,
FFTSZ,
1,
FFTSZ/2+1,
FFTSZ/2+2,
FFTSZ
X2 THRESHOLD = NS*FFTSZ/DASC
PRIM OUT = X3
)
$NODE (SPL3
PRIMITIVE = DCP_SPL
PRIM_IN = FFTSZ,
1,
ASWIND,
X3 THRESHOLD = NS*FFTSZ/DASC
PRIM_OUT = FAMILY[X4]
)
$NODE (MUL
PRIMITIVE = VRC_MUL
PRIM_IN = NAS*NS/DASC,
1,
X5 THRESHOLD = NAS*NS/DASC,
X4 THRESHOLD = NS*FFTSZ/DASC
PRIM OUT = X6
)
$NODE (REORD2
PRIMITIVE = DFC_REORD
PRIM IN = NAS,
NIF,
1,
(NAS+1) /2,
(NAS+1) /2,
NAS,
X6 THRESHOLD = NAS*NS/DASC
PRIM_OUT = X7
)
%NODE (FFT
PRIMITIVE = FFT_CC
PRIM_IN = NIF,
NFSS,
1,
(NIF-NFSS) /2 +1,
X7 THRESHOLD = NIF*NS/DASC
PRIM OUT = X8
)
$NODE (PWR
PRIMITIVE = VOC_PWR
PRIM_IN = NFSS,
Management Communications & Control, Inc. - 26

SBIR Phase 1 Final Technical Report
N68335-98-C-0140

X8 THRESHOLD = NFSS*NS/DASC
X9,
UNUSED

PRIM_OUT

)

SNODE (LOG
PRIMITIVE
PRIM_IN

VOR_LOG
NFSS*NS/DASC,
ASGN,

2,
0.0EO,

X9 THRESHOLD = NFSS*NS/DASC
X10 '

PRIM_OUT
)

$NODE { LRQT
PRIMITIVE
PRIM_IN

DFC_LRQT

NFSS*NS/DASC,

REQ(1),

REQ(2) ,

REQ (3),

REQ (4),

REQ (5),

REQ (6) ,

X10 THRESHOLD = NFSS*NS/DASC
X11

PRIM_OUT
)

$NODE (HDI
PRIMITIVE = DFC_HDI
PRIM_IN = NFSS*NS/DASC,
1,
1,
HEADER,
MNA,
DM1,
DM2,
X11 THRESHOLD = NFSS*NS/DASC
UNUSED,
UNUSED,
ASOT

PRIM_OUT

)

The Q003 Graph is converted to a Domain Primitive Graph. This requires the following
substitutions/modifications:

1. For each node, replace the Q003 primitive with the corresponding Domain
Primitive. The corresponding Domain Primitive can be determined by referring to the
“Generalized Mapping Q003 Primitives to Domain Primitives.” Change the pPrRIM_IN
and PRIM_oUT lists as required, according to the information found in “Mapping of
Parameters Q003 Primitives to Domain Primitives.” Reference the “Domain Primitive
Descriptions” and the Q003 Descriptions as necessary.

2. Some primitives may need to be changed due to how the primitive is being used.
As will be shown in the example, the primitive brc_rcTR is mapped first to b_rroc based
on the entry in the “Generalized Mapping Q003 Primitives to Domain Primitives.”

Management Communications & Control, Inc. 27 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Upon further examination of how the primitive is used (namely one output queue), the
functionality required is that of p_ranin.

Some variables may have to be created or modified to satisfy the requirements of the
Domain Primitive. As an example, D_FANIN requires a variable (p) specifying a two
dimensional of elements that are to be output onto each output queue, whereas
DFC_FCTR requires only a single dimension array.

3. In some case, additional nodes must be added to the graph. As an example, the
Domain Primitive b_LRrQT, as currently implemented, does not convert FLOAT input to INT
output. Therefore, it is necessary to explicitly convert the output queue by adding a
node with a p_RTo1I primitive and also adding a queue to connect the two nodes.

4. The AN/UYS-2 single precision modes are 16 bit entities and double precision
modes are 32 bit entities. For the MCCI system, single precision is nominally 32 bit
(target dependent). The modes of Gips, VARs, and QUEUEs should be converted in that
all double precision entities should be modified to single precision (e.g. DFLOAT =>
FLOAT.)

Performing these modifications on the asne Q003 graph yields the following Domain
Primitive Graph:

%$GRAPH (ASNP %% Domain Primitive Version
GIP =

DASC : INT,

NAS :+ INT,

NS : INT,

FFTSZ : INT,

NIF : INT,

NFSS : INT,

BB : INT,

ASWIND : INT ARRAY (2),
REQ : FLOAT ARRAY (6),
MNA : INT ARRAY (2),
DM1 : INT,

DM2 : INT,

%% V Array Size on output queue
%% nominally KK = (NS*NFSS)/DASC + 8
%%

KK ¢ INT
VAR = ASNP_VALVE : INT,

ASGN : FLOAT,

HEADER : INT ARRAY (8)
INPUTQ = MEF : FLOAT,

OMNI : CFLOAT,

CARD : CFLOAT
OUTPUTQ = ASOT : INT V_ARRAY (KK))

$GIP(SPL1_BLS : INT ARRAY(2) INITIALIZE TO {FFTSZ, 1})
$GIP(SPL2_BLS : INT ARRAY(2) INITIALIZE TO {NAS, 1})
%$GIP(P_FANIN : INT ARRAY (4) INITIALIZE TO {NS*FFTSZ, 0, 0, NS*FFTSZ})

SQUEUE (X1 : CFLOAT)
$QUEUE (X2 : CFLOAT)

Management Communications & Control, Inc. 28 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

SQUEUE(X3 : CFLOAT)
%QUEUE (X4 : CFLOAT)
SQUEUE (X5 : FLOAT)
%QUEUE (X6 : CFLOAT)
SQUEUE (X7 : CFLOAT)
%QUEUE (X8 : CFLOAT)
3QUEUE (X9 : FLOAT)
$QUEUE (X10 : FLOAT)
%QUEUE (X11 : FLOAT)
$QUEUE (X12 : INT)

$NODE (FCTR %% Selects either OMNI or CARD input
%% based on BB
%% BB = 1 => OMNI
%% BB otherwise => CARD
PRIMITIVE = D_FANIN %% changed to FANIN from FLOC
PRIM_IN = NS*FFTSZ,
2,
P_FANIN,
BB,
FAMILY [OMNI, CARD] THRESHOLD = NS*FFTSZ
PRIM OUT = X1, :
UNUSED
)
$NODE (SPL1
PRIMITIVE = D_SPL
PIP_IN = ASNP_VALVE
PRIM_IN = DASC*FFTSZ,
1,
SPL1_BLS,

X1 THRESHOLD = NS*FFTSZ
PRIM_OUT = FAMILY[X2] VARIABLE VALVE = ASNP_VALVE
)

%NODE (SPL2
PRIMITIVE = D_SPL
PIP_IN = ASNP_VALVE
PRIM_IN = DASC*NAS,
1,
SPL2_BLS,

MEF THRESHOLD = NS*NAS
PRIM OUT = FAMILY[X5] VARIABLE VALVE = ASNP_VALVE
)

$NODE (REORD

PRIMITIVE = D_REORD
PIP_IN = ASNP_VALVE
PRIM_IN = FFTSZ,
FFTSZ,
1,
(FFTSZ/2) +1,
(FFTSZ/2)+2,
FFTSZ,
X2 THRESHOLD = (NS*FFTSZ)/DASC
PRIM OUT = X3)
$NODE (SPL3
PRIMITIVE = D_SPL
PRIM_ TN = FFTSZ,
Management Communications & Control, Inc. 29 SBIR Phase 1 Final Technical Report

N68335-98-C-0140

1,

ASWIND,
X3 THRESHOLD = (NS*FFTSZ)/DASC
PRIM _OUT = FAMILY([X4])
$NODE (MUL
PRIMITIVE = D_VMUL
PRIM_IN = (NS*NAS)/DASC,
0,
X5 THRESHOLD = (NS*NAS)/DASC,
X4 THRESHOLD = (NS*NAS)/DASC
PRIM OUT = X6)
$NODE (REORD2
PRIMITIVE = D_REORD
PRIM_IN = NAS,
NIF,
1,
(NAS-1) /2,
(NAS+1) /2,
NAS,
X6 THRESHOLD = (NS*NAS)/DASC
PRIM OUT = X7)
$NODE (FFT
PRIMITIVE = D_FFT
PRIM IN = NIF,
NF'SS,
1,
((NIF-NFSS) /2) +1,
UNUSED,
X7 THRESHOLD = (NS*NIF)/DASC
PRIM_OUT = X8)
$NODE (PWR
PRIMITIVE = D_PWR
PRIM 1IN = NFSS,
UNUSED,
X8 THRESHOLD = (NS*NFSS)/DASC
PRIM_OUT = X9,
UNUSED)
$NODE (LOG
PRIMITIVE = D_LOG
PRIM_IN = (NS*NFSS) /DASC,
2,
ASGN,
0.0EO,
X9 THRESHOLD = (NS*NFSS)/DASC
PRIM_OUT = X10)
$NODE (LRQT
PRIMITIVE = D_LRQT
PRIM_IN = (NS*NFSS) /DASC,
REQ(1),
REQ(2),
REQ(S),
REQ(6) ,
REQ(3),
REQ(4),
Management Communications & Control, Inc. 30

SBIR Phase 1 Final Technical Report
N68335-98-C-0140

X10 THRESHOLD = (NS*NFSS)/DASC

PRIM_OUT = X11)
$NODE (CNVRT
PRIMITIVE = D_RTOI
PRIM_IN = NS*NFSS/DASC,
UNUSED,
UNUSED,
X11 THRESHOLD = NS*NFSS/DASC
PRIM OUT = X12
)
$NODE (HDI
PRIMITIVE = D_HDI
PRIM_IN = (NS*NFSS)/DASC,
1,
HEADER,
MNA,
DM1,
DM2,
X12 THRESHOLD = (NS*NFSS)/DASC
PRIM_OUT = UNUSED,
UNUSED,
ASOT
)
$ENDGRAPH

The next step is to examine how the chain is used in the application. In this example,
the node referencing cun_asNP is in the graph cwascan. The $NoDE statement extracted
from cwAsCaN is: -

SNODE (ASCN
PRIMITIVE
PIP_IN

CHN_ASNP

CARD,

ASEL,

CARDBEAR,

VLV
THRESHOLD = 1

SDNS,

NAS,

NS,

FFTSZ,

NIF,

NFSS,

BB(IF CARD+ASEL+CARDBEAR EQ 0 THEN 1 ELSE 2),

(IF VLV EQ MN THEN 1 ELSE 0),

ASWIND,

ASGN,

REQ,

HEADER,

MNA,

DM1
THRESHOLD

DM2,

MEF
THRESHOLD

OMNI

PRIM_IN

1,

NS*NAS,

Management Communications & Control, Inc. 31 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

THRESHOLD = NS*FFTSZ,
CRD
THRESHOLD = NS*FFTSZ
PRIM _OUT = ASOT
PIP_OUT = DM1
PRODUCE = 1 OF O,
VLV

VARIABLE PRODUCE = 1 OF
(IF VLV EQ MN THEN 1 ELSE VLV+1l)
)

From the information in the $NODE statement, the chain description, and the graph
header from the asne Domain Primitive graph, the $ssuscraprr statement that will be
inserted into cwascan to replace the $NODE statement can be constructed.

First, the subgraph must be given a name and the underlying graph must be
referenced:

%SUBGRAPH (ASCN
GRAPH = ASNP

The 1nPUTQ and ouTpuTo lists are readily extracted from the snopE statement. The
queues MEF, OMNI, and cRD are input queues as expected. The queue asoT is an
output queue as expected. The parameter pM1 is also a queue.

There is also a feedback queue (both an input and output from the same node) named
vLv, associated with a prp_in and p1p_ouT. This will be ignored for the moment.

This leads to the following list.

INPUTQ DM1,
MEF,
OMNI,
CRD

DM1,

ASOT

OUTPUTQ

Next the cip and var lists are constructed from the $NODE statement and the graph
CWASCAN.

The following sNoDE statement parameters are formal c1ps to the graph cwascan : spNs,
NS, FFTSz, NIF, and NFSs.

The following ¢NoDE statement parameters are local cIps to the graph cwASCAN : NAS,
REQ, BB, and MNA.

The following $NoDE statement parameters are formal vars to the graph cwascan :
ASWIND, ASGN, HEADER.

The sNoDE statement entry corresponding to the asNnp_vALVE parameter is an
expression and therefore AsNp_vaALVE must be a vaAR.

Management Communications & Control, Inc. 32 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Based on these observations, the following c1p and var lists are constructed:

GIP = SDNS,
NAS,
NS,
FFTSZ,
NIF,
NESS,
BB,
REQ,
MNA,
DM2

VAR = ASNP_VALVE,
ASWIND,
ASGN,
HEADER

Putting this together, the preliminary $suBGraPH statement becomes:

%SUBGRAPH (ASCN
GRAPH
GIP

ASNP
SDNS,
NAS,
NS,
FFTSZ,
NIF,
NFSS,
BB,
REQ,
MNA,
DM2

VAR = ASNP_VALVE,
ASWIND,
ASGN,
HEADER
VLV,
DM1,
MEF,
OMNI,
CRD
VLV,
DM1,
ASOT

INPUTQ

OUTPUTQ

)

The preliminary $suBGraPH statement must now be reconciled with the graph header
for the asnp Domain Primitive graph. It must be remembered that the $suBGrarH
statement contains actual arguments while the asnp Domain Primitive graph contains
formal arguments. (Actual names may be the same as formal names but are not
required to be identical.)

The following changes must be made to the asnp Domain Primitive graph header:

ASWIND was declared as a c1p and needs to be a var.

Management Communications & Control, Inc. 33 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

pM1 was declared as a cIp and needs to be an INPUTQ and an OUTPUTOQ.

The following changes must be made in the $suBGrAPH statement:

The cwascan cIp parameter vasz must be passed to the asnp Domain Primitive
graph parameter kk. This parameter is used to set the maximum size of the v_array

output queue AsoOT.

The asnp Domain Primitive graph header becomes:

%GRAPH (ASNP

GIP =
DASC INT,
NAS INT,
NS : INT,
FFTSZ : INT,
NIF INT,
NFSS INT,
BB INT,
REQ : FLOAT ARRAY (6),
MNA : INT ARRAY (2),
DM2 INT,
%% V Array Size on output queue
%% nominally KK = (NS*NFSS)/DASC + 8
%%
KK INT
VAR = ASNP_VALVE : INT,
ASWIND : INT ARRAY(2),
ASGN : FLOAT,
HEADER INT ARRAY (8)
INPUTQ = DM1 : INT,
MEF : FLOAT,
OMNI : CFLOAT,
CARD : CFLOAT
OUTPUTQ = DM1 INT,
ASOT INT V_ARRAY (KK))

o°

The 3$suBGrarH statement becomes:

%$SUBGRAPH (ASCN
GRAPH
GIP

VAR

ASNP
SDNS,

NAS,

NS,

FFTSZ,

NIF,

NFSS,

BB,

REQ,

MNA,

DM2,

VASZ
ASNP_VALVE,
ASWIND,
ASGN,
HEADER

Management Communications & Control, Inc. 34

% Domain Primitive Version

SBIR Phase 1 Final Technical Report

N68335-98-C-0140

INPUTQ

DM1,
MEF,
OMNI,
CRD
DML,
ASOT

OUTPUTQ

Finally, the remaining items in the cwascan graph sNoDE statement (p1P_IN, PIP_OUT,
and expressions) must be included into the application specific Asnp Domain Primitive
graph.

First, the expression associated with BB is considered. The expression contains three
variables (CARD, ASEL, and CARDBEAR) that are formal vars to the cwascan graph. These
variables must be formals to the asne Domain Primitive graph. The var list becomes:

VAR = CARD,
ASEL,
CARD_BEAR,
ASNP_VALVE,
ASWIND,
ASGN,
HEADER

Note that the order is arbitrary provided that the calling $suBGcrarH statement and the
graph header mate correctly.

The expression is evaluated to select an element from the variable BB that is a local
c1p to the cwascan graph. The variable BB contains two elements {1, 2}. ltis
interesting to note that the expression evaluates to these same values. Because of
this, it is possible to eliminate the variable s, and just use the expression. It was
decided to just use the expression and eliminate BB to avoid the run-time slicing of BB.

Next, the functionality of the feedback queue viv is considered. This functions as a
modulo counter. Every time the node executes, the value of the integer token placed
onto the feedback queue is increased by one until the value at the beginning of
execution of the node is equal to mn. When that occurs, a value of 1 is produced. This
functionality must be placed into the asnp Domain Primitive subgraph via p1p_1N and
pIP_ouT mechanism associated with the rcTr node. The variable My which is part of
the valve expression must be added to the graph header. This variable is a formal cIp
to the cwascan graph and will therefore be a formal cIp to the asnp Domain Primitive
Graph.

$NODE (FCTR

PRIMITIVE = D_FANIN

PIP_IN = VLV

PRIM_IN = NS*FFTSZ,
2,
P_FANIN,
BB,
FAMILY [OMNI, CARD] THRESHOLD = NS*FETSZ

Management Communications & Control, Inc. 35 SBIR Phase 1 Final Technical Report

N68335-98-C-0140

PRIM_OUT = X1,
UNUSED
PIP_OUT = VLV VARIABLE PRODUCE = 1 OF (IF VLV EQ MN THEN 1 ELSE VLV+l)

)

The queue vLv can either be declared as a local queue or as both a formal 1npUTO and
a formal outpuTo. Ifitis declared as a local queue, the initialization contained in the
cwascaNn graph must be included in the asne Domain Primitive graph. It was decided to
make it formal to maintain consistency with the original graph.

Additionally, since the value of vLv is used by two other nodes (spL1 and spL2), the
value of vLv must be passed to these two nodes. This is done by creating two queues
of mode 1NT, creating two p1P_oUTs on the FCTR node one for each queue, and creating
a pIp_IN on the spL1 and spPL2 nodes.

Next the expression ((IF VLV EQ MN THEN 1 ELSE 0)) inthe pRIM_IN list thatis
associated with the parameter Asnp_vaLVE is considered. This variable is used by two
nodes (spL1 and sp12). The value for viv was declared as a p1p_1N in the
modifications described in the previous paragraph. The expression is substituted for
the parameter asnp_vaLve in the PRIM_IN list for nodes spL1 and spL2. The parameter
ASNP_VALVE is no longer used and is removed from the formal var list and the
$SUBGRAPH statement.

When these modifications have been included, the asnp Domain Primitive graph
becomes: _

Domain Primitive Version

oP o o
o o

GRAPH (ASNP

GIP = DASC : INT,
NAS : INT,
NS : INT,
FFTSZ : INT,
NIF : INT,
NFSS : INT,
BB : INT ARRAY (2),
REQ : FLOAT ARRAY (6),
MNA : INT ARRAY(2),

DM2 : INT,
%% V Array Size on output queue
%% nominally KK = (NS*NFSS)/DASC + 8
%%
KK INT,
MN INT
VAR = CARDI : INT,
ASEL : INT,

CARD_BEAR : INT,
ASWIND : INT ARRAY(2),
ASGN : FLOAT,

HEADER : INT ARRAY (8)

INPUTQ = VLV : INT,
DM1 : INT,
MEF : FLOAT,
Management Communications & Control, Inc. 36 SBIR Phase 1 Final Technical Report

N68335-98-C-0140

OUTPUTQ =

OMNI : CFLOAT,

CARD : CFLOAT

VLVP : INT,

DM1P : INT,

ASOT : INT V_ARRAY (KK))

%GIP(SPL1_BLS : INT ARRAY (2) INITIALIZE TO {FFTSZ, 1})

%GIP(SPL2_BLS : INT ARRAY(2) INITIALIZE TO {NAS, 1})

%GIP(P_FANIN : INT ARRAY(4) INITIALIZE TO {NS*FFTSZ, 0, O,
NS*FFTSZ})

$QUEUE (
FQUEUE (
$QUEUE (
SQUEUE (
%QUEUE (
$QUEUE (
$QUEUE (
%QUEUE (
SQUEUE (
%QUEUE (
%QUEUE (
$QUEUE (
%QUEUE (
$QUEUE (

AC o o0 o dP d° of
2 I o o o o o

X1
X2
X3
X4
X5
X6
X7
X8

X9

X10
X11
X12
vivl
VLV2

: CFLOAT)

: CFLOAT)

: CFLOAT)

: CFLOAT V_ARRAY ((NS*NAS)/DASC))
: FLOAT V_ARRAY ((NS*NAS)/DASC))
: CFLOAT)

CFLOAT)

¢ CFLOAT)

: FLOAT)
¢ FLOAT)
: FLOAT)

INT)
INT)
INT)

Selects either OMNI or CARD input
based on BB
BB =1
BB otherwise => CARD
changed to FANIN from FLOC

=> OMNI

ODE (FCTR
PRIMITIVE = D_FANIN
PIP_IN = CARDI,
ASEL,
CARD_BEAR,
VLV THRESHOLD = 1
PRIM_IN = NS*FFTSZ,
2,
P_FANIN,
(IF ((CARDI+ASEL)+CARD_BEAR) EQ 0 THEN 1 ELSE 2),
FAMILY [OMNI,CARD] THRESHOLD = NS*FFTSZ
PRIM_OUT = X1,
UNUSED
PIP_OUT = VLVP VARIABLE PRODUCE = 1 OF (IF VLV EQ MN THEN 1 ELSE VLV+l),
VLV1 VARIABLE PRODUCE = 1 OF VLV,
VLV2 VARIABLE PRODUCE = 1 OF VLV)
$NODE (SPL1
PRIMITIVE = D_SPL
PIP_IN = VLV1 THRESHOLD = 1
PRIM_IN = DASC*FFTSZ,
1,
SPL1_BLS,
X1 THRESHOLD = NS*FFTSZ
PRIM OUT = FAMILY[X2] VARIABLE VALVE = (IF VLV1 EQ MN THEN 1 ELSE 0))
$NODE (SPL2
PRIMITIVE = D_SPL
PIP_IN = VLV2 THRESHOLD = 1
PRIM_IN = DASC*NAS,
1,
SPL2_BLS,
Management Communications & Control, Inc. 37 SBIR Phase 1 Final Technical Report

N68335-98-C-0140

MEF THRESHOLD = NS*NAS

PRIM OUT = FAMILY[X5] VARIABLE VALVE = (IF VLV2 EQ MN THEN 1 ELSE 0))
%NODE (REORD
PRIMITIVE = D_REORD
PRIM _IN = FFTSZ,
FFTSZ,
1,
(FFTSz/2) +1,
(FFTSZ/2)+2,
FFTSZ,
X2 THRESHOLD = (NS*FFTSZ)/DASC
PRIM_OUT = X3)
%NODE (SPL3
PRIMITIVE = D_SPL
PRIM_IN = FFTSZ,
1,
ASWIND,
X3 THRESHOLD = (NS*FFTSZ)/DASC
PRIM_OUT = FAMILY[X4])
$NODE (MUL
PRIMITIVE = D_VMUL .
PRIM_IN = (NS*NAS)/DASC,
0

14
X5 THRESHOLD
X4 THRESHOLD
PRIM OUT = X6)
%NODE (REORD2

(NS*NAS) /DASC,
(NS*NAS) /DASC

PRIMITIVE = D_REORD
PRIM_TN = NAS,
NIF,
1,
(NAS-1) /2,
(NAS+1) /2,
NAS,
X6 THRESHOLD = (NS*NAS)/DASC
PRIM_OUT = X7)
$NODE (FFT
PRIMITIVE = D_FFT
PRIM_IN = NIF,
NFSS,
1,
((NIF-NFSS) /2)+1,
UNUSED,
X7 THRESHOLD = (NS*NIF)/DASC
PRIM OUT = X8)
$NODE (PWR
PRIMITIVE = D_PWR
PRIM_IN = NFSS,
UNUSED,
X8 THRESHOLD = (NS*NFSS)/DASC
PRIM OUT = X9,
UNUSED)
$NODE (LOG
PRIMITIVE = D_LOG
PRIM_IN = (NS*NFSS)/DASC,
2,
ASGN,
0.0EO,
X9 THRESHOLD = (NS*NFSS)/DASC
PRIM_OUT = X10)
Management Communications & Control, Inc. 38 SBIR Phase 1 Final Technical Report

N68335-98-C-0140

$NODE (LRQT
PRIMITIVE
PRIM_IN

D_LRQT
(NS*NFSS) /DASC,
REQ(1),
REQ(2),
REQ (5),
REQ (6),
REQ(3),
REQ (4),
X10 THRESHOLD = (NS*NFSS)/DASC
PRIM_OUT = X11)
$NODE (CNVRT
PRIMITIVE = D_RTOI
PRIM IN = (NS*NFSS)/DASC,
UNUSED,
UNUSED,
X11 THRESHOLD = (NS*NFSS)/DASC
X12)

PRIM_OUT
$NODE (HDI
PRIMITIVE = D_HDI
PRIM_IN = (NS*NFSS)/DASC,
1,
HEADER,
MNA,
DM1 THRESHOLD
DM2,
X12 THRESHOLD
UNUSED,
UNUSED,
ASOT
DM1P PRODUCE = 1 OF 0)

1,

(NS*NFSS) /DASC
PRIM_OUT

PIP_OUT
$ENDGRAPH

The modified cwascan graph is obtained by replacing the $NoDE statement by the
$SUBGRAPH statement and making the other changes discussed. The modified cwascan
graph is:

../src/dccwas.grf:

KAk hkkhkkkhkhkhkhkhkhkhhkhhhkhhhkhhhkhkhhhhkhkhhhkhhhdbhhhrhkdkrhhkkhhkkhkxhhhhkhkhhk

GRAPH 'CWASCAN !
SPGN generated from GRED
Thu Mar 18 13:23:41 1993

dhhkhhkhkhkhkhkhhhhhhkhhk Ak kA hdhkhkdhkkkddhhhkhdhkhkdhddkdrrhh bk hhhhkhhhrk

o d o° o o P o
o o o o o o o

Unit: DICASS CWL,M,S A-Scan (150208, 150308, 150408)

Designed by: D. C. Lui
Coded by: D. C. Lui
Tested by: D. C. Lui and V. J. Izzo

Purpose: Performs omni/cardioid selection, windowing, reorder, zero
fill, IFFT, detection, log and scaling, requantization and

AC A A o° AP OC AC AP S O OI° AC O o O o P AP of
o0 00 O o A° A° A A A 0 O° OC O O O o O o o

Management Communications & Control, Inc. 39 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

ATU header insert.

Initial Conditions: See the GIP list and the QUEUE list below for
initial conditions.

Inputs: Cardioid and omni FFT data from Input Process Unit, normalized
window weights from Cardioid Mean Estimation Unit and control
parameters.

Outputs: A-Scan time series data for AIU via IOP.

Requirements: SRS Section 3.4.2.16.2.2.1.17 to 3.4.2.16.2.2.1.21,

o0 A0 o O S O O° AP A P O o° © o°
o P AP O o0 A° o O° O A AP o O° o

02/01/90
%$GRAPH (CWASCAN
GIP = VASZ : INT, %% VASZ => Max V_ARRAY size
PB : INT, %% PB => Number of passband bins
PTYPE : INT, %% PTYPE => Ping type: CWL=1, CWM=2, CWS=3
DASC : INT, %% DASC => Input decimation rate CWL,M=10 CWS=4
FFTSZ INT, %% FFTSZ => FFT size

NFSS => Number of bins selected for output from IFFT
NFSS => CWL,M=205, CWS=20

o o
o oP

NFSS : INT,

NIF : INT, %% NIF => IFFT size

NS : INT, %% NS => Number of scans per processing block.
%% MN => Number of input blocks CWL,CWM=DASC/NS, CWS=1

MN : INT,

SDNS => Number of scans for input decimation.
SDNS => CWL,CWM=NS CWS=DASC

o° o
o° oP

SDNS : INT
VAR =
%% CARD => Normal/Cardioid selection O=normal, l=cardioid
CARD : INT,
ASEL : INT, %% ASEL => Audio selection 0=omni, l=cardioid
CARDBEAR : INT, %% CARDBEAR => Bearing enhance
%% CARDBEAR => 0O=omni, l=cardioid
ASGN : DFLOAT, %% ASGN => A-Scan amplitude adjustment factor
HEADER : INT ARRAY (8), %% HEADER => AIU header
ASWIND : INT ARRAY(2) %% ASWIND => band selection array for
%% DCP_SPL
INPUTQ = OMNI : DCFLOAT, %% Omni data from Input Process Unit
CRD : DCFLOAT, %% Cardioid data from Input Process Unit
%% Normalized weights from Cardioid Mean Estimation Unit
MEF : DFLOAT
OUTPUTQ =

o
o°

A-Scan output to Flow Control LLCSC
ASOT : INT V_ARRAY (VASZ)
%% DECLARATIONS section (%GIP, $%VAR, %QUEUE)

%$GIP (AFLL : DFLOAT %% 21logl0, base 2 for lower clipping in requantization
INITIALIZE TO 6.643856188E00)

%$GIP (AFC : DFLOAT %% Requantization conversion factor
INITIALIZE TO 1.28E+02/AFLL)

%$GIP (AFLU : DFLOAT %% Upper clipping for requantization
INITIALIZE TO (1.27E+02/1.28E+02)*AFLL)

Management Communications & Control, Inc. 40 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

%GIP (AFSA : DFLOAT %% Requantization offset
INITIALIZE TO 0.0E+00)

$GIP (REQ : DFLOAT ARRAY (6) %% Requantization array
INITIALIZE TO { AFC, AFSA*AFC, AFLU-AFSA, (-1.0E+00*AFLL)-AFSA,
(1.27E+02/AFC) -AFSA, (-1.27E+02/AFC)-AFSA })

%GIP (ASCANFG : INT %% A-Scan data type for AIU header
INITIALIZE TO 24)
$GIP (DM2 : INT %% Data mask 2 for AIU header

INITIALIZE TO PTYPE*512+ASCANFG*4)

$GIP (MNA : INT ARRAY (2) %% Words to be ORed in AIU header
INITIALIZE TO { 6, 6 })

$GIP (MNS : INT %% Total number of scans
INITIALIZE TO MN*NS)

%$GIP (NID : INT %% Processing block size after bin reorder and padding.
INITIALIZE TO (MNS/DASC)*NIF)

%GIP (NSD : INT %% Processing block size after IFFT
INITIALIZE TO (MNS/DASC)*NFSS)

$GIP (NAS : INT %% Number of FFT bins selected for a a-scan band
INITIALIZE TO PB+6)

$GIP (NAD : INT %% Processing block size after FFT bin selection
INITIALIZE TO (MNS/DASC)*NAS)

%$GIP (OUTST : INT %% Output starting bin number for IFFT output
INITIALIZE TO ({(NIF-NFSS)/2)+1)

%% Omni/Cardioid selection array for input flow control
%$GIP (BB : INT ARRAY(2) INITIALIZE TO { 1, 2 })

$QUEUE (DM1 : INT %% First data block flag
INITIALIZE TO 1 OF 8192)

$QUEUE (VLV : INT %% Valve control
INITIALIZE TO 1 OF MN)

- %% TOPOLOGY section (%NODE, %SUBGRAPH)
SNODE (ASCN

PRIMITIVE
PIP_IN

CHN_ASNP
CARD,
ASEL,
CARDBEAR,
VIV
THRESHOLD = 1
PRIM_IN = SDNS,
NAS,
NS,
FFTSZ,
NIF,
NFSS,
BB (IF CARD+ASEL+CARDBEAR EQ 0 THEN 1 ELSE 2),

o° 00 o0 O ¢ O° A O° O O O o° o o°
o o o O A O° I O AP o O o0 o

Management Communications & Control, Inc. 41 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

PRIM_OUT
PIP_OUT

00 0 00 o0 o0 A0 I A O IO IO I ° OO OO O O O IO I° O o°
o o A A° O I AP O° A O AN O° I O° I O I A AP O OO o

)

$SUBGRAPH (ASCN
GRAPH
GIP

VAR

INPUTQ

OUTPUTQ

$ENDGRAPH

(IF VLV EQ MN THEN 1 ELSE 0),
ASWIND,

ASGN,
REQ,
HEADER,
MNA,
DM1
THRESHOLD = 1,
DM2,
MEF
THRESHOLD = NS*NAS,
OMNT
THRESHOLD = NS*FFTSZ,
CRD
THRESHOLD = NS*FFTSZ
ASOT
DM1
PRODUCE = 1 OF 0,
VLV
VARIABLE PRODUCE = 1 OF
(IF

ASNP
SDNS,
NAS,
NS,
FFTSZ,
NIF,
NFSS,
BB,
REQ,
MNA,
DM2,
VASZ,
MN
CARD,
ASEL,
CARDBEAR,
ASWIND,
ASGN,
HEADER
VLV,
DM1,
MEF,
OMNT,
CRD
VLV,
DM1,
ASOT

6.4 DICASS Conversion

A version of the DICASS Sonobuoy application was converted from the AN/UYS-2
implementation to a DPAG implementation. This process involved:

Management Communications & Control, Inc.

42

VLV EQ MN THEN 1 ELSE VLV+1)

SBIR Phase 1 Final Technical Report
N68335-98-C-0140

a. Converting the AN/UYS-2 DICASS graph and referenced subgraphs from
nodes referencing Q003 primitives to nodes referencing Domain Primitives as
described in Section 6.2 Converting AN/UYS-2 Graphs.

b. Converting the ASNP and BDWF chains from AN/UYS-2 chains to Domain
Primitive Subgraphs as described in Section 6.3 AN/UYS-2 Chains.

c. Implementing eighteen new Domain Primitives that implement sonobuoy,
display formatting, and/or DICASS specific processing.

6.4.1 Graph and Subgraphs

The philosophy regarding the conversion of the DICASS graph and related subgraphs
was to make as few modifications as possible, especially in regards to the DICASS
graph formal interface. This philosophy may or may not be desirable depending upon
the target platform on which the ported application will execute. Most AN/UYS-2
applications contain a large amount of display formatting. It should be remembered
that the AN/UYS-2 Arithmetic Processors are 16 bit machines, and some of the
formatting is based on this. A natural question arises when porting to a 32 bit (or 64
bit) machine. How should the data be packed? If the display is being replaced, the
formatting will likely change and this should be considered as part of the conversion.
Additionally, some AN/UYS-2 applications such as DICASS store data in the ISC
memory for reprocessing. If the ISC is not being used in the new target platform, this
data will have to be stored in a different place, possibly in memory located on the
target platform. Finally, since the Command Program is not readily reusable, should
the data from the Command Program be kept in the same format?

DICASS output is passed to tracking processing. The tracking processing, including
the AIU graph which distributes the feedback parameters, was not converted.

In addition to the modifications discussed in Section 6.2 Converting AN/UYS-2
Graphs, the following modifications were made:

1. Converted all families of Graph Instantiation Parameters (GIPs) into GIP arrays. In
all cases, the members of the family were single integers, therefore the conversion
was straightforward.

Example:

Declaration: $GIP([1..2]2THR : INT
INITIALIZE [1]ZTHR TO RYA
INITIALIZE [2}ZTHR TO NPADN)

becomes:
$GIP(ZTHR : INT ARRAY (2) INITIALZE TO {RYA, NPADN})
Usage: FAMILY [I=PADQ, ZPAD] THRESHOLD = [I]ZTHR
becomes:
FAMILY [I=PADQ, ZPAD] THRESHOLD = ZTHR(I)
Management Communications & Control, Inc. 43 SBIR Phase 1 Final Technical Report

N68335-98-C-0140

These types of conversion were necessary because the MCCI Autocoding Toolset
does not currently support GIP families.

2. Modified the graph as necessary to eliminate multi-element slicing of entities (GIPs
and VARs). This entailed changing the basic entity from a GIP or VAR to a queue and
specifying READ and OFFSET amounts.

%VAR(NOTCHW : FLOAT ARRAY (2,NFT) INITIALIZE TO {NFT OF 1.0E+00,
((NFT/2)-SBB)-3 OF 1.0E+00, 0.701201E+00, 0.242273E+00,
0.23472E-01, (2*SBB)+1 OF 0.0E+00, 0.23472E-01, 0.242273E+00,
0.701201E+00, ((NFT/2)-SBB)-4 OF 1.0E+00})

%QUEUE (NOTCHW : FLOAT INITIALIZE TO NFT OF 1.0E+00,
((NFT/2)-SBB)-3 OF 1.0E+00, 0.701201E+00, 0.242273E+00,
0.23472E-01, (2*SBB)+1 OF 0.0E+00, 0.23472E-01, 0.242273E+00,
0.701201E+00, ((NFT/2)-SBB)-4 OF 1.0E+00)

%NODE (SLICE1l
PRIMITIVE = D_REP
PIP_IN = AREVERB,
SLICE_TRIG THRESHOLD = 1
PRIM_IN = NFT,
1,
NOTCHW THRESHOLD = 2*NET
READ = NET
VARTIABLE OFFSET = (AREVERB-1)*NET
CONSUME = 0

PRIM _OUT = FAMILY[NOTCHW_VAR]
PIP_OUT = NOTCH_TRIG PRODUCE = 1 OF 1
)

For those few cases where the entity was used by more than one node, an additional
node was inserted into the graph that performed an offset read from the queue and
placed the data into a VAR.

$NODE (AWQ2VAR

PRIMITIVE = D_REP
PRIM_IN = UNUSED,
1,
AW
THRESHOLD = (4*19)*5
READ = 19*5
VARIABLE OFFSET = ((SONF-1)*19)*5
CONSUME = 0

PRIM_OUT = FAMILY[AW_VAR]
)

In order to execute these nodes only at graph start and graph re-initialization, a trigger
queue input to the node as a PIP_IN was used to control when the node(s) was ready
for execution. Further, one or more trigger queues were incorporated as outputs from
the node (as a PIP_OUT) and input to the node requiring the VAR to ensure that the
VAR was initialized correctly prior to use by another node.

Management Communications & Control, Inc. 44 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

This type of conversion was necessary because the MCCI Autocoding Toolset and
data flow graph executing SRTS do not currently support slicing.

There were some minor edits where the AN/UYS-2 graph was passing an array or a
single element of the array as a parameter to a node. These edits were of the form:

FOO(1..2, 1..N) => FOO %% entire array being passed.
FOO(1..1) => FOO or FOO(1) %% either entire array or single
. ‘ element passed.
BB(expr) => expr %% BB contained values equal

to index.

6.4.2 Domain Primitives
The Domain Primitives that were implemented for DICASS are:

DCP_CGA - Channel Gain Adjust

DCP_CLS - DICASS Clustering

DCP_CRB - Center Reverberation Bin Estimation
DCP_INTD - Interpolation - Decimation
DCP_LAGI - Weighted Lag Integration
DCP_RINT - Running Integration

DFC_HDI - Header Insert

DFC_MCS - Mode Change Synchronization
DFC_PACK - Data Bit Pack

DFC_REQ - Requantization

DFC_VSCT - V_Array Selective Concatentation
DGP_HFMG - Hyperbolic FM Generation
SSP_AGC - Automatic Gain Control

SSP_CARD - Cardioid Formation

SSP_DCD - DIFAR Coherent Detection
SSP_SYNO - Synthetic Omni and Bearing Formation
SSP_ZDT - Zero Detection

VCM_DTH - DICASS Thresholding

The following Q003 Primitives are used in DICASS but were not implemented.

DMC_FXFL - Fixed to Float conversion. Data from ISC is FIXED with scale of O.
This is same as integer. Used integer to float conversion.
DFC_VPACK - Used VSCT instead.

Additionally, a (preliminary) version of MERGE was implemented.

Some of the Domain Primitives that were implemented are complex due to the
generalized nature of the primitive. Mode Change Synchronization is an example.
This primitive is used to ensure that graph variables updated by the Command
Program occur at essentially the same time. The primitive permits different sizes of
families for each of the five outputs and any output can be unused. In hindsight, some

Management Communications & Control, Inc. 45 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

of these primitives should have been implemented in a simpler fashion without being
concerned with completely implementing all of the generalized functionality of the
Q003 version.

6.4.3 Chains

The ASNP chain was converted into a subgraph using the conversion procedure
described in Section 6.3 AN/UYS-2 Chains.

The BDWF chain was converted into five subgraphs using the conversion procedure
described in Section 6.3 AN/UYS-2 Chains. Each mode of operation was
implemented as a separate subgraph, and each referenced a common subgraph
which implemented the tail-end processing.

6.4.4 Partitioning

The partitioning scheme implemented was based solely on partitioning requirements
of the Autocoding Toolset. The restrictions imposed by the Toolset are that variable
reads, variable consumes, and variable writes can only occur on queues that cross
partition boundaries. “Variable” valves can only occur on partition output queues;
however, by changing a “variable” valve to a valve and including the parameter values
in the Graph Value Set, this can be encapsulated inside a partition at the expense of
increased code size. The Merge construct must be in a partition by itself.

Based on these rules, certain Domain Primitives essentially force partition boundaries.
However, in many cases, the complete flexibility of this type of Domain Primitive is not
required. By using a Domain Primitive that performs the desired operation but does
not have the flexibility, a partition boundary requirement may be eliminated. An
example is using D_CAT instead of D_FANIN. D_FANIN permits run-time variation of
how the data is concatenated, but in this mode requires that the output queue be an
output from the partition. D_CAT also concatenates data, but without the run-time
variation. In this demonstration, no effort was made to eliminate partition boundaries.
This may or may not be possible for the DICASS application.

The partitioning performed for this demonstration resulted in 142 partitions.

The iconic form of one partition, P_CWSIN_4, is shown in Figure 10.

Management Communications & Control, Inc. 46 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

5_CWSP_5_C

Figure 10. Partition P_CWSIN_4

Management Communications & Control, Inc. 47 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

The notational form of the same partition is:

%GRAPH (P_CWSIN_ 4
INPUTQ = S_CWSP_S_CWIN_S_EWQ : FLOAT
OUTPUTQ = S_SC10 : INT,
S_CWSP_S_CWIN_S_EWCS : INT,
S_CWSP_S_CWIN_S_EWRT : CFLOAT,
[1..3]GATHERED_OUTPUT_1 : CFLOAT)

%GIP (S_CWSP_S_NF : INT
INITIALIZE S_CWSP_S_NF TO 20)

$GIP (S_CWSP_S_CWIN_S_F : FLOAT ARRAY (1)
INITIALIZE S_CWSP_S_CWIN_S_F TO {2.44140600000000E-01})

%GIP (S_CWSP_S_CWIN_S_FIRSZ1 : INT
INITIALIZE S_CWSP_S_CWIN_S_FIRSZ1 TO 11)

$GIP (S_CWSP_S_CWIN_S_FIR1 : FLOAT ARRAY (S_CWSP_S_CWIN_S_FIRSZ1)
INITIALIZE S_CWSP_S_CWIN_S_FIR1 TO {9.87871740000000E-03,
-4.20027990000000E-04, -5.85211180000000E-02, 1.07341250000000E-03,
2.98794630000000E-01, 4.98531370000000E-01, 2.98794630000000E-01,
1.07341250000000E-03, -5.85211180000000E-02, -4.20027990000000E-04,
9.87871740000000E-03})

$GIP (S_CWSP_S_CWIN_S_FIRSZ2 : INT
INITIALIZE S_CWSP_S_CWIN_S_FIRSZ2 TO 39)

$GIP (S_CWSP_S_CWIN_S_FIR2 : FLOAT ARRAY (S_CWSP_S_CWIN_S_FIRSZ2)
INITIALIZE S_CWSP_S_CWIN_S_FIR2 TO {-1.23575920000000E-03,
8.70276560000000E-05, 2.53144400000000E-03, -7.23021220000000E-05,
-4,79434850000000E-03, 1.93636250000000E-04, 8.44822920000000E-03,
-2.12764510000000E-04, -1.37729710000000E-02, 3.47536320000000E-04,
2.18234450000000E-02, -3.78957080000000E-04, -3.40838430000000E-02,
5.03258610000000E-04, 5.51007170000000E-02, -5.15613120000000E-04,
-1.00731690000000E-01, 6.01775770000000E-04, 3.16516400000000E-01,
4.99431310000000E-01, 3.16516400000000E-01, 6.01775770000000E-04,
-1.00731690000000E-01, -5.15613120000000E-04, 5.51007170000000E-02,
5.03258610000000E-04, -3.40838430000000E-02, -3.78957080000000E-04,
2.18234450000000E-02, 3.47536320000000E-04, -1.37729710000000E-02,
-2.12764510000000E-04, 8.44822920000000E-03, 1.93636250000000E-04,
-4.79434850000000E-03, -7.23021220000000E-05, 2.53144400000000E-03,
8.70276560000000E-05, -1.23575920000000E-03})

$GIP (S_CWSP_S_CWIN_S_FS2 : FLOAT
INITIALIZE S_CWSP_S_CWIN_S_FS2 TO 1.00000000000000E+00)

%GIP (S_CWSP_S_CWIN_S_NX : INT
INITIALIZE S_CWSP_S_CWIN_S_NX TO (S_CWSP_S_NF * S_CWSP_S_NF))

%GIP (S_CWSP_S_CWIN_S_TISZ : INT
INITIALIZE S_CWSP_S_CWIN_S_ISZ TO (4 * S_CWSP_S_CWIN_S_NX))

$QUEUE (S_CWSP_S_CWIN_S_EW12 : CFLOAT
INITIALIZE S_CWSP_S_CWIN_S_EW12 TO ((S_CWSP_S_CWIN_S_FIRSZ2 - 2) * 3) OF <
0.00000000000000E+00, 0.00000000000000E+00>)

%QUEUE (S_CWSP_S_CWIN_S_EWBS : CFLOAT
INITIALIZE S_CWSP_S_CWIN_S_EWBS TO ((S_CWSP_S_CWIN_S_FIRSZ1 - 2) * 3) OF <
0.00000000000000E+00, 0.00000000000000E+00>)

%QUEUE (S_CWSP_S_CWIN_S_EWCT : INT
INITIALIZE S_CWSP_S_CWIN_S_EWCT TO 1 OF 0)

$QUEUE (S_CWSP_S_CWIN_S_EWFQ : CFLOAT)

%QUEUE (S_CWSP_S_CWIN_S_NPEW : INT
INITIALIZE S_CWSP_S_CWIN_S_NPEW TO 1 OF 0)

$QUEUE (S_CWSP_S_CWIN_S_PGQ : CFLOAT)

SNODE (S_CWSP_S_CWIN_S_BSHF

Management Communications & Control, Inc. 48 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

PRIMITIVE = D_CDMV
PRIM_IN =

S_CWSP_S_CWIN_S_ISZ,

3,

UNUSED,

1024,

S_CWSP_S_CWIN_S_F,

S_CWSP_S_CWIN_S_FS2,

S_CWSP_S_CWIN_S_NPEW

THRESHOLD = 1,
S_CWSP_S_CWIN_S_EWQ
THRESHOLD = (S_CWSP_S_CWIN_S_ISZ * 3)
PRIM OUT =

S_CWSP_S_CWIN_S_EWBS,

S_CWSP_S_CWIN_S_NPEW)
$NODE (S_CWSP_S_CWIN_S_FD1

PRIMITIVE = D_FIRILS
PRIM_IN =
((S_CWSP_S_CWIN_S_ISZ + S_CWSP_S_CWIN_S_FIRSzl) - 2),

3,
S_CWSP_S_CWIN_S_FIRSZ1,
2,
S_CWSP_S_CWIN_S_FIR1,

S_CWSP_S_CWIN_S_EWBS

THRESHOLD = (((S_CWSP_S_CWIN_S_ISZ + S_CWSP_S_CWIN_S_FIRSZ1) - 2) *3)
READ = (((S_CWSP_S_CWIN_S_ISZ + S_CWSP_S_CWIN_S_FIRSZl) - 2) * 3)
CONSUME = (S_CWSP_S_CWIN_S_ISZ * 3)

PRIM _OUT = S_CWSP_S_CWIN_S_EW12)

$NODE (S_CWSP_S_CWIN_S_FD2
PRIMITIVE = D_FIR1S
PRIM_IN =
(((S_CWSP_S_CWIN_S_ISZ / 2) + S_CWSP_S_CWIN_S_FIRSZ2) - 2),

3,
S_CWSP_S_CWIN_S_FIRSZ2,
2,
S_CWSP_S_CWIN_S_FIR2,
S_CWSP_S_CWIN_S_EW12

THRESHOLD = ((((S_CWSP_S_CWIN_S_ISZ / 2) + S_CWSP_S_CWIN_S_FIRSZ2) -
2) * 3)

READ = ((((S_CWSP_S_CWIN_S_ISZ / 2) + S_CWSP_S_CWIN_S_FIRSZ2) - 2) *3)
CONSUME = ((S_CWSP_S_CWIN_S_ISZ / 2) * 3)

PRIM_OUT = S_CWSP_S_CWIN_S_EWFQ)
%NODE (S_CWSP_S_CWIN_S_EWR
PRIMITIVE = D_REP
PRIM_IN =
(S_CWSP_S_CWIN_S_NX * 3),
2,
S_CWSP_S_CWIN_S_EWFQ
THRESHOLD = (S_CWSP_S_CWIN_S_NX * 3)
PRIM_OUT = FAMILY [S_CWSP_S_CWIN_S_EWRT, S_CWSP_S_CWIN_S_PGQ])
$NODE (S_CWSP_S_CWIN_S_DMXP
PRIMITIVE = D_DMUX
PIP_IN = S_CWSP_S_CWIN_S_EWCT
THRESHOLD = 1
PRIM_IN =
S_CWSP_S_NF,
. 3’
S_CWSP_S_CWIN_S_PGQ
THRESHOLD = (S_CWSP_S_CWIN_S_NX * 3)
PRIM OUT = [1..3]GATHERED_OUTPUT_1

Management Communications & Control, Inc. 49 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

PIP_OUT =

S_CWSP_S_CWIN_S_EWCT

VARIABLE PRODUCE = (S_CWSP_S_CWIN_S_EWCT + S_CWSP_S_CWIN_S_NX),

S_SC10

VARIABLE PRODUCE = (S_CWSP_S_CWIN_S EWCT + S_CWSP_S _CWIN_S_NX),
S_CWSP_S_CWIN_S_EWCS

PRODUCE = 1 OF 1

)

SENDGRAPH

The Graph Value Set for the partition is empty:

%GV_SET
SEND_SET

The autocoded source code for the mpid that implements the partition is:

/***/

/* File: p_cwsin_4.c . */
/* Generated by the MCCI MPID Autocode Generator - Version: 0.9 */
/* On 10/26/98, at 20:36:52 */
/* target: MERCURY_PPC options: immed-write/N probe/N sid/N */

/***/

/* Library */
#include "rts_sys.h"

/* Static Run-Time System Header File */
#include "srtshdrs.h"

/* Autocoded MPID Files */

#include "p_cwsin_4.constants.h"
#include "p_cwsin_4.in_neps.h"
#include "p_cwsin_4.mpid_data type.h"
#include "p_cwsin_4.h"

void p_cwsin_4 (
Persistent_Data_Type *mpid_data,

Rts_Handle_Type rts_handle,

int S_CWsp_s_cwin_s_ewq,

int s_sclo,

int S_cwsp_s_cwin_s_ewcs,

int S_cwsp_s_cwin_s_ewrt,

int gathered_output 1

)

{

char *s_cwsp_s_cwin_s_ewq data_ptr [

S_CWSP_S_CWIN_S_EWQ MAX FAMILY_ SIZE];

char *s_sclo_storage_ptrs [S_SC1O_MAX_ FAMILY SIZE];

int - s_sclo_produce_amount;

char *s_cwsp_s_cwin_s_ewcs_storage_ptrs [

S_CWSP_S_CWIN_S_EWCS_MAX FAMILY SIZE];

int S_Cwsp_s_cwin_s_ewcs_produce_amount;

char *s_cwsp_s_cwin_s_ewrt_storage_ptrs [

S_CWSP_S_CWIN_S_EWRT MAX FAMILY_SIZE];

int s_cwsp_s_cwin_s_ewrt_produce_amount;
Management Communications & Control, Inc. 50 SBIR Phase 1 Final Technical Report

N68335-98-C-0140

char

*gathered_output_1_storage_ptrs [

GATHERED_OUTPUT_1_MAX FAMILY SIZE];
gathered_output_1l_produce_amount [
GATHERED_QUTPUT_1_MAX FAMILY SIZE]:;

int

int s_cwsp_s_nf;

float s_cwsp_s_cwin_s_£f [1];
int s_cwsp_s_cwin_s_firszl;
float s_cwsp_s_cwin_s_firl [11];
int s_cwsp_s_cwin_s_firsz2;
float s_cwsp_s_cwin_s_fir2 [39];
float s_cwsp_s_cwin_s_fs2;
int S_CWsSp_s_cwin_s_nx;
int s_cwsp_s_cwin_s_isz;
int il_pl_aasize;

float il_pl_afi;

float il_pl_afr;

int il_pl_bsoffset;

int il_pl_bsstep;

float il_pl_fdelta;

float i1_pl_ffs;

float 11 _pl_fm;

float il_pl_fone;

float il_pl_fround;

float il_pl_fzero;

int il_pl _mvalue;

float il_pl_xf;

int il_pl_xmode;

int il_p5_xamt;

int il_p5_ykmax;

int il_p5_yvsize;

int index_mx; /* Loop Parameter */
int index_n; /* Loop Parameter */
int index_a; /* Loop Parameter */
int index_ne; /* Loop Parameter */

s_cwsp_s_nf = 20; '
s_cwsp_s_cwin_s_f[0] = 2.44140600000000E-01;
s_cwsp_s_cwin_s_firszl = 11;

s_cwsp_s_cwin_s_£firl[0]

9.87871740000000E-03;

s_cwsp_s_cwin_s_firl[1]
s_cwsp_s_cwin_s_firl[2]
s_cwsp_s_cwin_s_firl([3]
s_cwsp_s_cwin_s_firl[4]
s_cwsp_s_cwin_s_firl[5]
s_cwsp_s_cwin_s_firl[6]
s_cwsp_s_cwin_s_firl[7]
s_cwsp_s_cwin_s_firl[8]
s_cwsp_s_cwin_s_firl[9]

s_cwsp_s_cwin_s_firl[10]

s_cwsp_s_cwin_s_firsz2

s_cwsp_s_cwin_s_fir2[0]
s_cwsp_s_cwin_s_fir2[1]
s_cwsp_s_cwin_s_fir2[2]
s_cwsp_s_cwin_s_fir2[3]
s_cwsp_s_cwin_s_fir2[4]
s_cwsp_s_cwin_s_fir2[5]
s_cwsp_s_cwin_s_fir2[6]
s_cwsp_s_cwin_s_fir2[7]
s_cwsp_s_cwin_s_fir2[8]
s_cwsp_s_cwin_s_fir2[9]

Management Communications & Control,

{1 T Y T 1 |

w
0

I PN

I o | | Do |

w

4.20027990000000E-04;
5.85211180000000E-02;

.07341250000000E-03;
.98794630000000E-01;
.98531370000000E-01;
.98794630000000E-01;
.07341250000000E-03;

5.85211180000000E-02;
4.20027990000000E-04;

9.87871740000000E-03;

1.23575920000000E-03;

.70276560000000E-05;
.53144400000000E-03;

7.23021220000000E-05;
4.79434850000000E-03;

.93636250000000E-04;
.44822920000000E-03;

2.12764510000000E-04;
1.37729710000000E-02;

Inc.

.47536320000000E-04;

51

SBIR Phase 1 Final Technical Report
N68335-98-C-0140

s_cwsp_s_cwin_s_fir2[10]
s_cwsp_s_cwin_s_fir2[11]
s_cwsp_s_cwin_s_fir2[12]
s_cwsp_s_cwin_s_fir2[13]
s_cwsp_s_cwin_s_fir2[14]
s_cwsp_s_cwin_s_fir2[15]
s_cwsp_s_cwin_s_fir2[16]
s_cwsp_s_cwin_s_fir2[17]
s_cwsp_s_cwin_s_f£fir2[18]
s_cwsp_s_cwin_s_fir2[19]
s_cwsp_s_cwin_s_fir2[20]
s_cwsp_s_cwin_s_fir2[21]
s_cwsp_s_cwin_s_fir2[22]
s_cwsp_s_cwin_s_fir2[23]
s_cwsp_s_cwin_s_fir2[24]
s_cwsp_s_cwin_s_£fir2[25]
s_cwsp_s_cwin_s_fir2[26]
s_cwsp_s_cwin_s_fir2[27]
s_cwsp_s_cwin_s_£fir2[28]
s_cwsp_s_cwin_s_fir2[29]
s_cwsp_s_cwin_s_fir2[30]
s_cwsp_s_cwin_s_fir2[31]
s_cwsp_s_cwin_s_fir2[32]
s_cwsp_s_cwin_s_fir2[33]
s_cwsp_s_cwin_s_fir2[34]
s_cwsp_s_cwin_s_fir2[35]
s_cwsp_s_cwin_s_fir2[36]
s_cwsp_s_cwin_s_£fir2[37]
s_cwsp_s_cwin_s_fir2[38]

| | (| | | (O (| ([O |

N

t

Il oywdbdh W | | (O |

Il —Roo |l I Wb I | 0o

N |

.18234450000000E-02;
3.78957080000000E-04;
3.40838430000000E-02;
.03258610000000E-04;
.51007170000000E-02;
5.15613120000000E-04;
1.00731690000000E-01;
.01775770000000E-04;
.16516400000000E-01;
.99431310000000E-01;
.16516400000000E-01;
.01775770000000E-04;
1.00731690000000E-01;
5.15613120000000E-04;
.51007170000000E-02;
.03258610000000E-04;
3.40838430000000E-02;
3.78957080000000E-04;
.18234450000000E-02;
.47536320000000E~04;
1.37729710000000E-02;
2.12764510000000E-04;
.44822920000000E-03;
.93636250000000E-04;
4.79434850000000E-03;
7.23021220000000E-05;
.53144400000000E-03;
.70276560000000E-05;
1.23575920000000E-03;

s_cwsp_s_cwin_s_£fs2 = 1.00000000000000E+00;

s_cwsp_s_cwin_s_nx =

s_cwsp_s_cwin_s_isz =

read_queue_srts (
S_Cwsp_s_cwin_s_ewq,

400;
1600;

s_cwsp_s_cwin_s_ewq _read_amount [mpid _data->state] [0],
s_cwsp_s_cwin_s_ewq_offset_amount[mpid_data->state] [0],
&s_cwsp_s_cwin_s_ewq _data ptr[0],

rts_handle
);:
il _pl_fone =
il _pl_fround
il_pl_fzero =
il_pl mvalue =
vfilli (

1024;

1.00000000000000E+00;
= 5.00000000000000E-01;
0.00000000000000E+00;

&mpid_data->persistent_area[58712],
&mpid_data->scratch_area[8256],

1,

3

);
il_pl_xmode =
memcpy_mcci

1;

&mpid_data->scratch_area[8224],

1,
&s_cwsp_s_cwin_s_f,
1,
4,
1
);

vEill ¢

&mpid_data->scratch_area[8224],

Management Communications & Control, Inc.

52

SBIR Phase 1 Final Technical Report

N68335-98-C-0140

&mpid_data->scratch_area[8224] + 4,

1,
2
):
il _pl_£ffs = 1.00000000000000E+00;
to_float _mcci (
&il_pl_mvalue,
dint,
0,
&il_pl_fm,
0
):
il_pl_fdelta
il_pl_aasize
vramp (
&il_pl_fzero,
&il_pl_fdelta,
&mpid _data->scratch_area[0],
2,
il_pl_mvalue
):
cvexp (
&mpid_data->scratch_area[0],
2,
&mpid_data->scratch_area[0],
2,
il_pl_mvalue
)7
vabs (
&mpid_data->scratch_area[8224],
1,
&mpid_data->scratch_area[8208],
1,
3
):
lveq (
&mpid_data->scratch_area[8224],
1, .
&mpid_data->scratch_area[8208],
1,
&mpid_data->scratch_area[8272],
1,
3
);
vlim (»
&mpid_data->scratch_area[8272],
1,
&11l_pl_fone,
&il_pl_fone,
&mpid_data->scratch_area{8272],
1,
3
):
vsmul (
&mpid_data->scratch_area([8208],
1,
&il_pl_fm,
&mpid_data->scratch_area[8208],
1,
3

8;

Management Communications & Control, Inc.

~6.28318530720000E+00 / il_pl_fm;

53

SBIR Phase 1 Final Technical Report
N68335-98-C-0140

);
vsdiv (

&mpid_data->scratch_area[8208],

1,
&il_pl_ffs,

&mpid_data->scratch_area[8208],

1,

3

)7
vsadd ()

&mpid_data->scratch_area[8208],

1,
&il_pl_fround,

&mpid_data->scratch_area{8208],

1,

3

);
vmul (

&mpid _data->scratch_area[8208],

1,

&mpid_data->scratch_area[8272],

1,

&mpid_data->scratch_area[8208],

1,

3

);
viix32 (

&mpid_data->scratch_area[8208],

1,

&mpid_data->scratch_area[8240],

1,

3

)
memcpy_mcci

&il_pl_fdelta,

1,
&mpid_data->scratch_area[8224],
1,

14

r

if ((is_equal_mcci (il_pl_fdelta, 0.00000000000000E+00)))

4
1
)

/* Error recovery NOT implemented (as of 8.7.95). */
/* BEGIN removed message...:
S_CWSP_S_CWIN_S_F must not be 0
...END removed message */

}

else .
if ((is_greaterthan_mcci (il_pl_fdelta, il_pl_f£ffs)))
{

/* Error recovery NOT implemented (as of 8.7.95). */
/* BEGIN removed message...
S_CWSP_S_CWIN_S_F greater than sampling frequency
...END removed message */
}
memcpy._.mcci (
&il_pl_xmode,
1,
&mpid_data->scratch_area[8256],

Management Communications & Control, Inc. 54 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

~

— =
-

if (((il_pl_xmode < 0) || (il_pl_xmode >= il_pl mvalue)))
{
/* Error recovery NOT implemented (as of 8.7.95). */
/* BEGIN removed message...
Bandshift table pointer is out of range
...END removed message */
}
vsmuli (
&mpid_data->scratch_area[8256],
1,
&11_pl_aasize,
&mpid_data->scratch_area[8192],
1,
3
):
for (index_mx = 0; index_mx <= 2; index_mx++)
{
memcpy_mcci (
&il_pl_bsoffset,
1,
s&mpid_data->scratch_area[8192] + index mx * 4,
1,
4,
1
):
memcpy_mcci (
&11_pl_bsstep,
1,
smpid_data->scratch_area[8240] + index mx * 4,
1,
4,
1
);
for (index n = 0; index_n <= 1599; index_n++)
{
memcpy_mcci (
&il_pl_xf,
1,
s_cwsp_s_cwin_s_ewq_data_ptr[0] + 4 * (index n * 3 + index _mx) +
0 * index_n * 4,
1,
4,
1
)7
memcpy_mcci (
&il_pl_afr,
1,
&mpid_data->scratch_area[0] + il_pl_bsoffset,
1,
4,
1
)i
memcpy_mcci (
&il_pl_afi,
1,
smpid_data->scratch_area[0] + il_pl_bsoffset + 4,

Management Communications & Control, Inc. 55 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

1,
4,
1

)i

il _pl_afr = il_pl_afr * il_pl_xf;
il _pl_afi = il_pl_afi * il_pl_xf;
memcpy_mcci (
&mpid_data->persistent_area{20304] + (index_n * 3 + index _mx) *
il_pl_aasize,
1,
&il_pl_afr,
1,
4,
1
)y
memcpy_mcci (
&mpid _data->persistent_area[20304] + (index_n * 3 + index mx) *
il_pl_aasize + 4,
1,
&il_pl_afi,
1,
4,
1
)y
il_pl_bsoffset = il_pl_bsoffset + il_pl_aasize * il_pl_bsstep;
if ((i1l_pl_bsoffset >= il_pl_mvalue * il_pl_aasize))
{

}

else

il_pl_bsoffset = il_pl_lbsoffset - il_pl mvalue * il_pl_ aasize;

if (il_pl_bsoffset < 0)
{
il_pl_bsoffset = il_pl bsoffset + il_pl_mvalue * il_pl_aasize;

}
}
memcpy_mcci (
&il_pl_bsoffset,
1,
&mpid;data—>scratch_area[8256] + index_mx * 4,
1,

4,
1
)
if ((il_pl_bsstep > 0))

il _pl_bsoffset = il_pl_bsoffset + 1600 * il_pl bsstep;
while ((il_pl_bsoffset >= il_pl_mvalue))

il_pl_bsoffset = il_pl_bsoffset - il_pl_mvalue;
}
}

else

il_pl_bsoffset = il_pl_bsoffset + 1600 * il_pl_bsstep;
while ((il_pl_bsoffset < 0))
{

}

il_pl_bsoffset = il_pl bsoffset + il_pl_mvalue;

Management Communications & Control, Inc. 56 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

}

}

memcpy_mcci (

&mpid_data->scratch_area[8256] + index mx * 4,

1,
&11_pl_bsoffset,
1,

4,

1

):

vmovi (

&mpid_data->scratch_area[8256],
1,
&mpid_data->persistent_area[58716],
1,

1

Y

vmov (

&s_cwsp_s_cwin_s_firl,

1,
&mpid_data->scratch_area[0],
1,
11
):

for (index_mx = 0; index_mx <= 2; index_mx++)

{

vsmul (

&mpid_data->persistent_area[20088] + index_mx * 8,

12,
&mpid_data->scratch_area[0] + 40,

&mpid_data->persistent_area[888] + index mx * 8,

6,
800
):

vsmul (

&mpid_data->persistent_area[20088] + index mx * 8 + 4,

12,
smpid_data->scratch_area[0] + 40,

&mpid_data->persistent_area[888] + index_mx * 8 + 4,

6,

800

)
for (index_a = 1; index_a <= 10; index_a++)
{

vma (

&mpid_data->persistent_area[20088] + (index_a * 3 + index_mx) * 8,

12,

&mpid_data->scratch_area[0] + (- index_a + 10) * 4,

0

6,

14
&mpid_data->persistent_area[888] + index_mx * 8,

&mpid_data->persistent_area[888] + index_mx * 8,

6,
800

):
}
for (index_a = 1; index_a <= 10; index_a++)
{

vma

Management Communications & Control, Inc. 57

SBIR Phase 1 Final Technical Report
N68335-98-C-0140

smpid _data->persistent_area[20088] + (index a * 3 + index mx) * 8

+ 4,
12,
&mpid_data->scratch_area[0] + (- index_a + 10) * 4,
0,
s&mpid_data->persistent_area[888] + index mx * 8 + 4,
6,
smpid_data->persistent_area{888] + index_mx * 8 + 4,
6,
800
):
}
}
vmov
&s_cwsp_s_cwin_s_fir2,
1,
&mpid_data->scratch_area[9600],
1,
39

):
for (index mx = 0; index_mx <= 2; index_mx++)
{
vsmul (
smpid_data->persistent_area[0] + index mx * 8,
12,
&mpid_data->scratch_area[9600] + 152,
smpid_data->scratch_area[0] + index mx * 8,
6,
400
):
vsmul (
smpid_data->persistent_area[0] + index mx * 8 + 4,
12,
&mpid_data->scratch_area[9600] + 152,
s&mpid_data->scratch_area[0] + index mx * 8 + 4,
6,
400
):
for (index a = 1; index_a <= 38; index_at++)
{
vma (
smpid_data->persistent_area[0] + (index_a * 3 + index mx) * 8,
12,
s&mpid_data->scratch_area[9600] + (- index_a + 38) * 4,
0,
&mpid_data->scratch_area[0] + index mx * 8,
6,
smpid_data->scratch_areal[0] + index mx * 8,
6,
400
)i
}
for (index_a = 1; index_a <= 38; index_at+)
{
vma (
smpid_data->persistent_area[0] + (index_a * 3 + index mx) * 8 + 4,

12,
smpid_data->scratch_area[9600] + (- index a + 38) * 4,
0,
Management Communications & Control, Inc. 58 SBIR Phase 1 Final Technical Report

N68335-98-C-0140

&mpid_data->scratch_area{0] + index mx * 8 + 4,

6,
&mpid_data->scratch_area{0] + index_mx * 8 + 4,
6,
400
):
}
}
cvmov (
&mpid_data->scratch_area[0],
2,
&mpid_data->scratch_area[48076],
2,
1200

):
il_p5_ykmax = 20;
il_pb5_yvsize = 160;
for (index_ne = 0; index_ne <= 19; index_ne++)
{
il1_p5_xamt = 20;
if ((20 > il_p5_ykmax))
{

ivmov (.
smpid_data->scratch_area[48076] + index_ne * 480,

g%pid_data—>scratch_area[16] + index_ne * il_p5_yvsize,

ii_pS_xamt

if)(’(il__p5__xamt < 20))

il1_p5_xamt = 1l_p5_ykmax;

velr (
&mpid_data->scratch_areal[l6] + index_ne * il _p5 yvsize +
il1_pS5_xamt * 8,
1,
(- 11_p5_xamt + 20) * 2
);
}
if ((index_ne == 0))
{
}
if ((il_p5_xamt > il_p5_ykmax))
{

ivmov (

&mpid_data->scratch_area[48076] + index_ne * 480 + 8,
2&pid_data—>scratch_area[3216] + index_ne * i1l1_p5_yvsize,
ii_pS_xamt
if 1iil_p5_xamt < 20))

il_p5_xamt = il_p5_ykmax;

velr (
&mpid_data->scratch_area[3216] + index_ne * il_p5_yvsize +
il_p5_xamt * 8,
1,

Management Communications & Control, Inc. 59 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

(- i1_p5_xamt + 20) * 2
):

if ((index_ne == 0))
{

}
if ((1i1_p5_xamt > il_p5_ykmax))
{

il_p5_xamt = il_p5_ykmax;
évmov (
&mpid_data->scratch_area[48076] + index_ne * 480 + 16,
g%pid_data—>scratch_area[6416] + index ne * il_p5_yvsize,
ii_pS_xamt
if 1iil_p5_xamt < 20))

velr (
&mpid data->scratch_areal[6416] + index_ne * il_p5_yvsize +
il_p5_xamt * 8,
1,
(- i1_p5_xamt + 20) * 2
);
}
if ((index_ne == 0))
{
}
}

*((int *) &mpid_data->persistent_area[58708]) = *((int *)&mpid_data->
persistent_area[58704]) + s_cwsp_s_cwin_s_nx;
*((int *)&mpid_data->scratch_area[0]) = *((int *)&mpid_data->

persistent_area[58704]) + s_cwsp_s_cwin_s_nx;
*((int *)&mpid_data->scratch_area[8]) = 1;
copy_data_srts (
&mpid_data->persistent_area[19200],
&mpid_data->persistent_areal0],
888
);
copy_data_srts (
&mpid_data->persistent_area[58488],
&mpid_data->persistent_area[20088],
216
)i
copy_data_srts (
&mpid_data->persistent_area[58708],
&mpid_data->persistent_area[58704],
4 .
):
copy_data_srts (
&mpid data->persistent_area[58716],
&mpid _data->persistent_area([58712],
4
);
s_sclo_produce_amount = 1;
s_sclo_storage_ptrs[0] = &mpid_data->scratch_area[0];
write_queue_srts (
s_sclo,
s_sclo_produce_amount,

Management Communications & Control, Inc. 60 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

s_sclo_storage_ptrs[0],
0,
rts_handle

);
s_cwsp_s_cwin_s_ewcs_produce_amount = 1;
s_cwsp_s_cwin_s_ewcs_storage_ptrs[0] = &mpid_data->scratch_area[8];
write_queue_srts (

S_Cwsp_s_cwin_s_ewcs,

s_cwsp_s_cwin_s_ewcs_produce_amount,

s_cwsp_s_cwin_s_ewcs_storage_ptrs([0],

0,

rts_handle

)i
s_cwsp_s_cwin_s_ewrt _produce_amount = 1200;
s_cwsp_s_cwin_s_ewrt_storage_ptrs[0] = &mpid data->scratch_area[48076];
write_queue_srts (

s_cwsp_s_cwin_s_ewrt,

s_cwsp_s_cwin_s_ewrt_produce_amount,

s_cwsp_s_cwin_s_ewrt_storage_ptrs[0],

14
rts_handle
)i

gathered_output_1_produce_amount[0] = 400;
gathered_output_1_produce_amount[1l] = 400;
gathered_output_1_produce_amount[2] = 400;

gathered output_1_storage_ptrs[0]
gathered_output_1_storage_ptrs[1l]
gathered_output_1_storage_ptrs[2]
write_queue_family_srts (
gathered_output_1,
gathered_output_1_produce_amount,
gathered_output_1_storage_ptrs,
0,
rts_handle
):
consume_queue_srts (
S_cwsp_s_cwin_s_ewq,
s_cwsp_s_cwin_s_ewq_consume_amount [mpid_data->state] [0],
rts_handle
):

&émpid _data->scratch_area[l6];
&mpid_data->scratch_area[3216];
&mpid_data->scratch_area[6416];

}

void p_cwsin_4_reinit local_info (
Persistent_Data_Type ‘*mpid_data,

Rts_Handle_Type rts_handle
)
{
cfloat s_cwsp_s_cwin_s_ewl2_init_array;
cfloat s_cwsp_s_cwin_s_ewbs_init_array;
int s_cwsp_s_cwin_s_ewct_init_array;
int s_cwsp_s_cwin_s_npew_init_array;

mpid _data->state = TOP_OF_PERIOD;

if (mpid_data->persistent_area == SRTS_NULL)

{
mpid_data->persistent_area = (char *)SRTS_MEM aligned_malloc (
SRTS_MEM_MPIDPRIVATE, 58720, 0, rts_handle):;

}

if (mpid_data->scratch_area == SRTS_NULL)

{

Management Communications & Control, Inc. 61 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

mpid_data->scratch_area = (char *)SRTS_MEM_aligned malloc
SRTS_MEM_MPIDSCRATCH, 57676, 0, rts_handle);
}
s_cwsp_s_cwin_s_ewl2_init_array.real
s_cwsp_s_cwin_s_ewl2_init_array.imag
init_buff srts (
&mpid_data->persistent_areal0],
(char *)&s_cwsp_s_cwin_s_ewl2_init_array,
sizeof (cfloat),
111
):
S_cwsp_s_cwin_s_ewbs_init_array.real
s_cwsp_s_cwin_s_ewbs_init_array.imag
init_buff srts (
&mpid_data->persistent_area[20088],
(char *)&s_cwsp_s_cwin_s_ewbs_init_array,
sizeof (cfloat),
27
);
s_cwsp_s_cwin_s_ewct_init_array = 0;
init _buff_srts (
&mpid_data->persistent_area[58704],
(char *)&s_cwsp_s_cwin_s_ewct_init_array,
sizeof (int),
1
)i
s_cwsp_s_cwin_s_npew_init_array = 0;
init buff_srts (
&mpid_data->persistent_area[58712],
(char *)&s_cwsp_s_cwin_s_npew_init_array,
sizeof (int),

0.00000000000000E+00;
0.00000000000000E+00;

0.00000000000000E+00;
0.00000000000000E+00;

1
)i
}
void p_cwsin_4_det_gv_set (
Persistent_Data_Type *mpid_data,
Rts_Handle_Type rts_handle

)
{

}

mpid data->state = 1;

void *p_cwsin_4_cleanup (
void *arg_ptr,
Rts_Handle_Type rts_handle
)

(

Persistent _Data_Type *mpid_data = (Persistent_Data_Type *)arg_ptr;

if (mpid_data->persistent_area)
{
SRTS_MEM_free (
SRTS_MEM_MPIDPRIVATE,
mpid data->persistent_area,
58720,
rts_handle
)i
mpid_data->persistent_area = SRTS_NULL;
}

Management Communications & Control, Inc. 62 SBIR Phase 1 Final Technical Report

N68335-98-C-0140

if (mpid_data->scratch_area)
{

SRTS_MEM_free (
SRTS_MEM_MPIDSCRATCH,
mpid_data->scratch_area,
57676,
rts_handle
)

mpid_data->scratch_area = SRTS_NULL;

}
return (
SRTS_NULL
):
}

The iconic form for each of the partitions is contained in Appendix D.

6.4.5 Testing

Complete testing of the converted graph was beyond the scope of this effort.
Additionally, test vectors were not available. However, some of the partitions were
individually tested. The following description is representative of the testing
performed.

Simulated sensor data set generated for the CWS mode is shown in Figures 11
through Figure 13. This data was then used in the MPID Test Environment to
individually exercise each autocoded partition. The output from the partition was used
as the input to the downstream partition. Values of GIPs and VARSs required to execute
the mpid were entered into data files. A script file was constructed to execute the
graph by executing the partitions in a “control flow” order that was derived from the
data flow graph.

A modified version of the Equivalent Application Graph is shown in Figure 14. The
graph contains only those equivalent nodes (i.e., partitions) that are executed when
the CWS mode is being processed. The bolded lines in the figure indicate queues for
which plots of queue contents were captured and these plots are included as figures in
this document.

Management Communications & Control, Inc. 63 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Figure 12. Detail of Simulated EW Sensor Data

Management Communications & Control, Inc. 64 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Simulated NS Sensor Data

13.

igure

F

igure 14. Simulated Omni Sensor Data

F

N68335-98-C-0140

SBIR Phase 1 Final Technical Report

65

Management Communications & Control, Inc.

0¥10-0-86-GEEON
poday [edIUYDa] [BUIY | BSBUd HIFS

99

"OU] ‘|oUOD) %R SUOHEDIUNWLWOY) Juswabeuey

(SMD 2pow jo jed se ajndaxa jey) sapou asoy} Ajuo suiejuod)
ydeuao :o;mo__nne. Ea_m>_=cm ww<o_n_ _um:__uos_ ‘Gl 9inbi4

AMKNTS NYINDTS7dSMO™S

.&sz_._ TS NYIND S TdSMOTS

— LE] m..ZﬂuEZ e d!

MO

-G Td5MD

2

- 100076 TdSMOTS

#.5 NOSY 5 'NYOSY

dSMI

MSN S NI 6. dSMD!S ..
2°G WD 6" dSMT S
£ m/ EED STNWD 5 dSid

m mIZwso S

SY 5 NYDSY S dsad”
J11375 DIONY-S 5o
YOS TdSMOTS
sMoTeTdsMaTs
Q(aoum mm_so S

ns

088 G aSMD 5

m 9%dd mJ&.ﬁEO $TdSMaTS
% ZEhh..Ztqum Lmﬁn.m

dS0 5" dSMO o

445N TS Td S 5
145355 .dSMaTe

= N M2

dEN0"ETdSMATS
09 e NMO & d dSHa TS TdSMO \
€3S NMOE dsAI 5) o

£-dS

- SamaTs

Dxmmnm.ﬁnwm 6 =
.aomam ..ﬂ

% 50345076 dSMD §
J%5 03d50 & dSMT &
VS5 MO S 4SMD

01476 TN TS TS MITS

S5 NMO TS qSmagt |
QYTSTASMI S
ASUTET NKAD 51 dSMITS
- HIXKNS NWMOTS dSMOTS
DI & NFAD S TdSM

941075 "N
041976 TN3TS d m;ﬁu!m

495 dsNITS

m...zwso m TdSMOTS

25376 NKAD S “dSMO
i ; IS DTS TdSMKT

~4703d5075TAEMITE
DRSS TdsM0TE |

Representative data from one test set is shown in the following figures. Since actual
parameter values were not available, many parameters were set to either one or zero.
For other parameters either an educated or an uneducated guess was used.

The sensor data after basebanding and filtering is shown in Figures 16 through 18.

Figure 16. Data on Queue ZQ

Figure 17. Data on Queue NSMQ

Management Communications & Control, Inc. 67 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Figure 18. Data on Queue OMMQ

The following figures (19-32) show the contents of selected queues that connect
equivalent nodes.

Management Communications & Control, Inc. 68 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Figure 19. Data on Queue SC1

Figure 20. Detail of Data on Queue SC1

Management Communications & Control, Inc. 69 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Figure 21. Detail of Data on SC2 - Real, Imaginary, and Magnitude

Management Communications & Control, Inc. 70 SBIR Phase 1 Final Technical Report
' N68335-98-C-0140

Data on Queue CDCM

igure 22,

F

Data on Queue BRCC

igure 23.

F

SBIR Phase 1 Final Technical Report

71

Management Communications & Control, Inc.

N68335-98-C-0140

Figure 24. Data on Queue BRCN

Figure 25. Data on Queue Nmean_FPSB

Management Communications & Control, Inc. 72 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Figure 26. Data on Queue Nmean_NMWF

Figure 27. Data on Queue Nmean_UNWF

Management Communications & Control, Inc. 73 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Figure 28. Data on Queue Cmean_NMWF

Figure 29. Data on Queue Audio_FLT

Management Communications & Control, Inc. 74 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Figure 30. Data on Queue Waterfall_X10

Figure 31. Data on Queue Ascan_X2

Management Communications & Control, Inc. 75 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Figure 32. Data on Queue Ascan_X6

6.4.6 Graph Value Sets

The MCCI Autocoding Toolset performs partial instantiation of the graph at compile
time. The values permissible for certain integer variables (GIPs and VARs) must be
defined. Any parameter which affects the execution sequence and/or the memory map
must be defined in the Graph Value Set. For the DICASS graph, the following
parameters fall into this category:

PBINCF - total number of coarse and fine bins selected for output to AlU
LPB - CWL A-scan passband bin count

MPB - CWM A-scan passband bin count

SPB - CWS A-scan passband bin count

It is likely that these parameters could be eliminated from the Graph Value Set by
modifying sections of the graph to use queues of mode v_array. In that case, only the
maximum value of these parameters would have to be defined. This requires further
investigation to determine the validity of this approach. Workarounds for several other
parameters that initially were required to be in the Graph Value Set were found and
implemented.

Management Communications & Control, Inc. 76 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

6.4.7 Status

Partition graphs were generated successfully for the converted DICASS graph and
related subgraphs. All of the partitions were successfully autocoded with the following
exceptions:

The Mode Change Synchronization Domain Primitive (D_MCS) was not
implemented correctly due to a misinterpretation of the Q003 description. This
resulted in an inability to use the implemented version as required by the application.

The Channel Gain Adjust (CGA) processing was originally implemented as a
single subgraph, however each of the CW modes (CWL, CWM, and CWS) process a
different data amount. This processing either needs to be converted to encompass
queues of mode v_array, or else separate subgraphs need to be incorporated for each
of the modes that process a different data amount.

The Merge construct was implemented to process the same amount of data
from each member of the family of input queues. Some of the instantiations of Merge
require a different amount of data from each member. The Autocoding Toolset does
not currently support this capability.

The processing of the data for the displays using the VPACK primitive was not
correctly understood, and therefore the processing implemented using D_ VSCT is
believed to be incorrect.

D_PACK packs four four bit words into a 32 bit word, leaving the higher order
bits zeroed. This should be modified to pack 8 four bit words into the 32 bit word.

In generating the FM subreplicas, the starting bin for the output is selected via a
run-time expression. The current implementation of the FFT Domain Primitive does
not support this parameter as run-time variable. The FFT implementation needs to be
modified.

It is estimated that correcting these problems will require about a 0.75 personmonth
effort.

The requirements for the interface to the display were not reviewed, and therefore the
processing likely does not output the correct number of words.

An Input/output Procedure to generate simulated NS, EW and Omni signals was
constructed. Other Input/Output procedures were not implemented. No Command
Program was implemented.

6.4.8 Level of Effort

The level of effort required to perform each of the major functions associated with the
conversion of the DICASS graph is shown in Table 2.

Management Communications & Control, Inc. 77 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

Task _ Hours

Domain Primitives 387.5
Convert Graph 33.0
Convert Chains 22.0
Partition/Autocode 17.0
Test Partitions 87.5
Total 547

Table 2. Level of Effort

6.4.9 Conclusions and Recommendations

The DICASS graph and related subgraphs were readily converted to Domain Primitive
Application Graphs. New Domain Primitives were implemented to encompass the
functionality required by DICASS that was not in the existing Domain Primitive set.
These new primitives are sonobuoy processing or display related.

A limitation of the current toolset is that there is no easy way to iconically designate
partitions, and further the viewing of graph - subgraph connections is not available
within DSPGRAPH. Each graph can be displayed individually, but simultaneous
viewing of several graphs becomes cumbersome for large graphs. Little effort was
made to create partitions that contained segments from different subgraphs. The
number of partitions could be decreased by this method.

When viewing the Equivalent Application Graph, an additional limitation of
DSPGRAPH is apparent. Partition Builder constructs node and queue names that are
long. It does this in order to ensure uniqueness of names. A byproduct of this naming
convention is that it is easy to trace back to the graph source of any entity. In order to
read the names, the scale factor must be high; however, to view a large graph, the
scale factor must be reduced.

Additionally, the automatic layout processing currently in DSPGRAPH is insufficient
for graph with large number of nodes, and/or with many queues that create a
“spiderweb.”

The following actions are recommended to complete a meaningful demonstration of
DICASS processing on a COTS platform:

1. Correct the deficiencies identified under the Section “Status” above.

2. The DICASS graph used for conversion is of unknown origin and seemed to
contain some errors and modifications. The Merge construct was referenced with both
integer queues and integer array queues, yet only integer queues are permitted by the
PGM specification. Some queues were not attached at the head, others were not
attached at the tail and contained no initialization data. Therefore, before proceeding,

Management Communications & Control, Inc. 78 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

a known correct version of the graph should be obtained, and used as the baseline.
The modifications made should be implemented in this baseline. '

3. Requirements for the display interfaced need to be reviewed, so that a thorough
understanding of the interface can be obtained.

4. The Command Program interface needs to be reviewed and representative values
for parameters identified, such that representative data sets can be generated.

5. Test vectors are required to test the converted graph. These data sets need to
reflect the parameter values of item 4.

6. The converted graph should be embedded into a system that contains the display
so that proper operation can be observed.

7. ILS Strategy

The architecture family MCCI proposes will support development of a COTS friendly
ILS strategy. A board replacement maintenance strategy will be a fact of life for the
majority of military system lifetimes. Replacement boards will use new technology and
perhaps a new architecture. MCCI's architecture family concept will facilitate the
introduction of new technology replacement boards without the attendant major
software rewrites that would otherwise be necessary. Application reuse in hybrid new
and old technology systems will be supported. An ILS strategy that integrates life
cycle software support with board replacement logistics support will be supportable.

7.1 Board Replacement ILS Strategy

The architecture family will support a board replacement maintenance strategy.
Introduction of a new technology generation into a vendor’s product line usually
involves an operating system upgrade. Operating system upgrades may support older
technology generations for some period; e.g., Mercury Computer Systems, Inc.’s
MCOS support of i860, Power PC, and SHARC based boards. The Autocoding
Toolset’s middleware level interfaces to operating systems will make any
dependencies on operating system upgrades transparent to the maintainers. New
technology boards may replace older boards without expensive software rewrite. It
may be necessary, or expedient, to reassign tasks and threads to accommodate or
take advantage of the new technology. This can be readily accomplished by re-
autocoding the application with different partitioning directives. This is analogous to a
recompile.

7.2 Board and Vendor Migration

At some point in airborne system life cycle, vendor support for older technology boards
will inevitably be dropped. At that point, replacement of older, non-supported boards
will be required. MCCI will continue to support boards as long as they are fielded.
Transitioning board sets to new technology boards may be made a part of regularly
scheduled major maintenance actions. Board replacement within older supported
sets will serve maintenance needs in the interim. Again, no major application software

Management Communications & Control, Inc. 79 SBIR Phase 1 Final Technical Report
N68335-98-C-0140

rewrite will be necessary to transition to new technology boards. All target specific
modifications are encapsulated within the Autocoding Toolset and the corresponding
run-time services. Transition to new technology board sets will also provide a natural
opportunity to change board vendors. It is entirely possible that boards from multiple
vendors will be used within the fleet. At the time a board set is replaced, it may be
convenient to replace it with a set from an alternative vendor. Again, this may be
undertaken without expensive software rewrite.

7.3 Incorporation of Performance Upgrades with Board Replacement

We have emphasized the minimal impact of board and vendor upgrades on software;
however, it may be advantageous to use the additional capacity new technology
boards will likely provide by introducing processing upgrades. Existing applications
may be incrementally upgraded without major disruption of existing code. Additional
channels may be added, new processes introduced, etc. These modifications can be
easily integrated into the existing application. Repartitioning may be accomplished to
best utilize the increased capacity without change to the existing application DPAGs.
New application configurations with upgrades incorporated may then be provided in
support of opportunistic or scheduled maintenance actions. Incremental upgrade of
processing capacity may be made an ongoing activity and integrated into
maintenance support to minimize impact on system availability.

Management Communications & Control, Inc. 80 SBIR Phase 1 Final Technical Report

N68335-98-C-0140

Appendix A - Description of Chain CHN_ASNP

Portable Reusable Application Software
SBIR Phase | Final Report

October 28, 1998

Prepared by: ,
Management Communciations and Control, Inc. (MCCI)
2000 North Fourteenth Street, Suite 220
Arlington, VA 22201
Under Contract N68335-98-C-0140

A-SCAN PROCESSING - CHN_ASNP

DESCRIPTION:

This chain performs the A-Scan time series processing for DICASS CW ping type
data. OMNI and CARD contain the FFT input data. MEF contains the normalized
coefficients for weighting the FFT data. Either OMNI or CARD is selected for
processing; if BB is 1, OMNI is selected, otherwise CARD is selected. The selected
FFT data are decimated and rearranged in frequency order. A sub-band of the
reordered FFT data is then selected for further processing. After the selected FFT bins
are weighted by the normalized weights, the weighted FFT data is inverse-transformed
back into a complex time series. The complex time series is then square-law detected.
The logarithm of the detected data is calculated and requantized into 8-bit data. ASOT
is the output data containing the requantized data with a header inserted at the
beginning. If VALVE = 0 the input data is consumed, but no additional processing is
done, and ASOT is not output.

A-SCAN PROCESSING - CHN_ASNP (continued)

CHAIN TOPOLOGY:

OMNI

DASC*FFTSZ, 2, 1, BB,
[OMNI, CARD]

(03x1)

DASC*FFTSZ,1,
{FFTSZ, 1}, ((1X1)

(11X

FFTSZ,FFTSZ, 1,FFTSZ/2+1,
FFTSZ/2+2,FFTSZ, ([1]X2)

x3)

FFTSZ, 1, ASWIND,
(X3)

([11X4)

Internal Data Modes:

X1, X2, X3, X4, X6, X7.X8 are DCF

X5, X9, X10 are DF
X1MisINT

CARD

NS*NFSS/DASC, 1, 1, HEADER,
MNA, DM 1, DM2, (X11),#

#,# ASOT

ASOT ¢— %

(X11)

MEF

DASC*NAS, 1, {NAS, 1},
MEF

(1Xs)

NAS*NE, 1,
([11X5), ([1}x4)

(X6)

NAS,NIF, 1, (NAS-1)72,
(NAS+1)72, NAS, (X6)

X7)

NIF, NFSS, 1,
(NIF-NFSS)2+1, (X7)

(X8)

NFSS, (X8)

(X9), #

NFSS*NE, ASGN, 2,
0.0, (X9)

(X109

NFSS*NE, REQ(1), REQ(2), REQ(3),
REQ(4), REQ(5), REQ(6), (X10)

xX11)

A-SCAN PROCESSING - CHN_ASNP (continued)

ALGORITHM:

For the processing performed, see the algorithms in CDRL Q003 for DCP_SPL,
DFC_FCTR, DFC_REORD, VRC_MUL, FFT_CC, VOC_PWR, VOR_LOG, DFC_LRQT,

and DFC_HDI.

PARAMETER LIST:

PRIMITIVE = CHN_ASNP
PRIM_IN = DASC, NAS, NS, FFTSZ, NIF, NFSS, BB, VALVE, ASWIND, ASGN, REQ,
HEADER, MNA, DM1, DM2, MEF, OMNI, CARD
PRIM_OUT = ASOT

MNEMONIC IINPUT DESCRIPTION [INPUT MODE IRANGE
AMOUNT
DASC IDecimation Rate 1 [110 10
NAS Sub-band size 1 | 4 to NIF
NS Scans per Processing Block |1 I 1to 32
FFTSZ FFT Size 1 I Constrained
NIF IFFT Size 1 I Constrained
NFSS Selected IFFT Output Bins |1 l 1toNIF
BB Flow Control array 1 | 1or2
VALVE Decimation Control Valve |1 I |0 or 1
ASWIND* Band Selection Array 1 | Array(2) [Constrained
ASGN mplitude Adjustment 1 DF Hmfloat
REQ* Requantization Parameters |1 DF +mfloat
Array(6)
HEADER* IU Header 1 | Array(8) [-32768 to
32767
MNA Ul Header ORed Words 1 I Array(2) |1to8
DM1 Data Mask One 1 I 32768 to 32767
DM2 Data Mask Two 1 I 32768 to 32767
MEFZ$ Normalized Weights DASC * DF +mfloat
NAS
OMNIt Omni Data DASC * DCF +mfloat
FFTSZ
CARDzt Cardioid Data DASC * |DCF +mfloat
FFTSZ

I These ports govern multiple execution, NE = NS/DASC.
* Array slicing for ASWIND: S([i1,][j1,][K]) -> ASWIND(i).
* Array slicing for REQ: S([i1,][j1,][K]) -> REQ().

* Array slicing for HEADER: S([i1,][j1,][K]) -> HEADER(i).

A-SCAN PROCESSING - CHN_ASNP (continued)

MNEMONIC |INPUT DESCRIPTION [INPUT |[MODE |RANGE
AMOUNT

ASOT A-Scan Output 1or0 I V_ARRAY}-32768 to 32767
(KK)

Note: KK = (NS*NFSS)/DASC + 8

CONSTRAINTS:

*+ 1 <ASWIND(2) < FFTSZ
* 1 <ASWIND(2) + ASWIND(1) - 1 < FFTSZ
* ASWIND(1) = NAS
FFTSZ = 2**k where k is an integer and 6<k<11
NIF = 2**k where k is an integer and 4<k<10
*REQ(3) 2 REQ(4)
MOD(NS, DASC) =0
4NIF + NIF*(NS/DASC) < 16k - 1
NS/DASC <12
READ(OMNI) = NS*FFTSZ
READ(CARD) = NS*FFTSZ
READ(MEF) = NS*NAS
READ(OMNI) + OFFSET(OMNI) - CONSUME(OMNI) =0
READ(CARD) + OFFSET(CARD) - CONSUME(CARD) =0
KK < KMAX

Note: KMAX is the user-defined maximum size of the output V_ARRAY.

Appendix B - Generalized Mapping of Q003 Pr|m|t|ves
to Domain Primitives

Portable Reusable Application Software
SBIR Phase | Final Report

October 28, 1998

Prepared by:

Management Communications and Control Inc. (MCCI)
2000 North Fourteenth Street, Suite 220
Arlington, VA 22201
Under Contract N68335-98-C-0140

Q003 Primitives to Domain Primitives

The Q003 primitives are taken from CDRL Q003 December 1, 1993.

Generalized Mapping of

Note that Domain Primitives do not support fixed types.

The mapping is organized by Q003 name. Separate charts are used for each of

the Q003 classifications (BFR_, FFT_, VCC_,, etc.)

BFR_

Q003 DP Comments
BFR_FREQ D_BFRF Family of weights has become array.
BFR_MFRQ D_BFRF Seems to be extended case of BFR_FREQ.
BFR_REL e
BFR_TRUE ———

CDM_ 8

Q003 DP Comments
CDM_CFF D_CDMF Without multiplexing.
CDM_CVF D_CDMV Without multiplexing.
CDM_CVEM D_CDMV
CDM_MRVF D_CDMV With multiplexing.

CDM_RFF D_CDMF Without multiplexing.

CDM_RFFM D_CDMF With multiplexing.

CDM_RE'IR D _CDMFIR Without multiplexing.

CDM_RVF D_CDMV Without multiplexing.
DCP_

Q003 DP Comments
DCP_AVG1 D_AVGl
DCP_AVGN D_AVGN DP not fully implemented.
DCP_CGA D_CGA
DCP_CGAl ——=
DCP_CLS D CLS
DCP_CRB D _CRB
DCP_CSMG ———

DCP_DEC D_DEC

DCP_EAVN D_EAVN DP not fully implemented.
DCP_ECLS ———

DCP_FROW D_FROW

DCP_FROWC | D_FRQWC

DCP_ (continued)

Q003 DP Comments
DCP_HAMN D_HAMN :
DCP_INTD D_INTD
DCP_ISDR ———

DCP_LAGI D_ILAGI
DCP_LINT D_LINT
DCP_MEF D_MEF
DCP_MET D_MET
DCP_METD ——
DCP_MWAG D_MWAG
DCP_MWGT D_MWGT
DCP_NME D_NME
DCP_NMED ——=
DCP_NORM i
DCP_NORM3 D_NORM3 Mean.
DCP_NSE ———
DCP_RINT D_RINT
DCP_SMERGE | D_SMERGE Family of sizes has become array.
DCP_SPL D_SPL
DCP_STI D_STI
DCP_TSS D _TSS
DCP_VDI D _VDI
DCP_VFILL D_VFILL
DFC_

Q003 DP Comments

DFC_BMAX ———

DEC_CAP ———

DFC_CAT D_CAT Family of sizes has become array.

DFC_DMUX D_DMUX

DFC_DSCC ———

DFC_DSD D _DSD

DFC_ERUP ———

DFC_FCTR D_FLOC

DFC_FLOC D_FLOC

DFC_FMTPK ———

DFC_HDI D_HDI V_array to vector and vice versa
may be accomplished by D VFILL.

DFC_IOVR ———

DFC_LROT D_LRQT

DFC_MCS D _MCS

DEC_MUX D_MUX

DFC_OTBD ———

DFC_OTR ———

DFC_PACK D_PACK

DFC_PSK ——

DFC_REORD D_REORD

DFC_REP D_REP Equivalences output. D_REPNE
Distinct output gqueués.

DFC_ (continued)

Q003 DP Comments
DFC_REP2 D_REP Equivalences output
D_REPNE Distinct output queues.
DFC_REQ —
DFC_REQV D_REQV
DFC_SCAT D_SCAT
DFC_SEP D _SEP
DFC_STA ———
DFC_SWTH D_SWTH ?
DEFC_TIME ———
DFC_TSR o
DFC_UNPK6 ———
DFC_VCAT D_CAT Concatenation only.
DFC_VPAC ———
DFC_VPC2 ———
DFC_VREP D_REP Equivalences output.
D_REPNE Distinct output queues.
DFC_VSCT D_VSCT
DFC_VT -— If maximum number of output elements
desired is KMAX(Y), this can be done with
D_REP or D_REPNE, but KK must be obtained
elsewhere.
If maximum number of output elements
desired is less than KMAX(Y), D_REORD can
be used.
DGP_
Q003 DP Comments
DGP_BEFWT ———
DGP_CWFM ——=
DGP_HFMG D_HFMG
DGP_WWG ——=
DMC_
Q003 DP Comments
DMC_CTOR D_CTOR
DMC_EMC D_EMC
DMC_FLIN D_RTOI
DMC_FXFL —
FFT_
Q003 DP Comments
FET _CC D_FFT
FFT_CC3 ——=
FFT _CR D_FFT
FFT_R2C —
FEFT_RC D _FFT

FIR

Q003

DP

Comments

FIR_C1S

D_FIR1S

Without multiplexing.

FIR C2S

D_FIR2S

Without multiplexing.

FIR C7

FIR _MC1S

D_FIR1S

With multiplexing.

FIR MX23

FIR _MX33

FIR_MX7

FIR R19

FIR_R1S

D_FIR1S

Without multiplexing.

FIR R1SC

D_FIR1S

Without multiplexing.

IIR_

Q003

DP

Comments

IIR C1S

D_TIIR1S

Without multiplexing.

IIR C22

MOC_

Q003

DP

Comments

MOC_TPSE

D_MTRANS

SSP_

Q003

Comments

SSP_AGC

SSP_BCOR

SSP_BMS

SSP_CARD

SSP_CCL

SSP_COMV

SSp_CVU

SSP_DCD

SSP_DNS

SSP_DSC

SSP_EST

SSP_FBRG

SSP_FPD

SSP_GAG

SSP_LPP

SSP_LPP2

SSP_LPPA

SSP_LPPV

SSP_MAP

SSP_MBPP

SSP_MEB

SSP_PDF

SSP_PPIN

SSP_SYNO

SSP_ (continued)

Q003 DP Comments
SSP_TDT -
SSP_TINT ———
SSP_TRK e
SSP_UTD —
SSP_ZDT D_ZDT
VCC_
Q003 DP Comments
VCC_VADD D _VADD
VCC_VDIV D_VDIV
VCC_VMUL D_VMUL
VCM_CTH2 D_CTH2 Parameter TN not used.
VCM_CTHS D_CTH2 With TD = 0.
VCM_DIFM D_DIFM
VCM_DTH D _DTH
VCM_THCC ———
VCM_THRS —
VCM_THRST ———
VOC_
Q003 DP Comments
VOC_CONJ D_CONJ
VOC__PWR D_PWR
VOR_
Q003 DP Comments
VOR_ATN2 D_ATAN2
VOR_IIND D_INDX Either Y or VY may be output. Easy change
to let K be valid data size of B if Y is a
v_array.
VOR__INDX D_TNDX
VOR_LIN D _LIN
VOR_LOG D _LOG
VOR_MAG D_MAG
VOR_VACM ——= I SLIDE=0, D VMUL may be used.
VOR_VCC2 D_VCC2
VOR_VCIP
VOR_VIND D_INDX Change to let K be valid data size of B.
VOR_VSQR D_SQORT
VOR_ZCC D_ZCC
VRC_
Q003 DP Comments
VRC_MUL D_VMUL

VRR_
Q003 DP Comments
VRR_GSUB —
VRR_INP D_VINP
VRR_VADD D_VADD
VRR_VDIV D_VDIV
VRR_VMUL D_VMUL
VRR_VSUB D_VSUB

Appendix C - Mapping of Parameters Q003 Primitives
to Domain Primitives

Portable Reusable Application Software
SBIR Phase | Final Report

October 28, 1998

Prepared by:

Management Communications and Control Inc. (MCCI)
2000 North Fourteenth Street, Suite 220
Arlington, VA 22201
Under Contract N68335-98-C-0140

Mapping of Parameters

Q003 Primitives to Domain Primitives

The following tables detail the correspondence between the parameters of a Q003
primitive call and the parameters of the corresponding Domain Primitive call(s).

Domain Primitives that are marked "vp" produce different amounts of output under
different circumstances. Therefore they must be output nodes in a Partition Graph.

BFR_FREQ => D_BFRF
DP param Q003 param Comments
D_BFRF
NF' NE (1) Must be GIP.
NC NC (2) Must be GIP.
NB NB (3) Must be GIP.
W [1..NB]W (5)]Family of weights must be made into array
(of arrays), or a vector if W is input as a
queue. The order of the elements in W has
also been changed: for a given W array
corresponding to an output beam, the array
has as many rows as there are input family
members of X, and each row has as many
columns as there areelements in an X vector.
X X (4)
Y Y
BFR_MFRQ => D_BFRF
DP param Q003 param Comments
NE' NF (1) Must be GIP.
NC NC (2) Must be GIP.
NB NB (3) Must be GIP.
) [1..NB]W (5)|Family of weights must be made into array
(of arrays), or a vector if W is input as a
queue. The order of the elements in W has
also been changed: for a given W array
corresponding to an output beam, the array
has as many rows as there are input family
members of X, and each row has as many
columns as there are elements in an X
vector.
X X (4)
Y Y
BFR_REL =>» ===
| DP param [0003 param | Comments
BFR_TRUE => ---
| DP param | 0003 param | Comments

CDM_CFF => D_CDMF

DP param Q003 param Comments

N N (1) Must be GIP.

MX 1 or UNUSED |Must be GIP if used.

FG FG (2)

NC NC (3) Must be GIP.

I I (4)

NP NP (6) May be GIP if NP' is unused.
X X (5)

Y Y

NP' NP'

CDM_CVF => D_CDMV

DP param Q003 param Comments
N N
MX 1 or UNUSED |Must be GIP if used.
Flag FG
M M Must be GIP.
F F Must be GIP or VAR array of size 1.
FS FS Must be GIP or VAR.
NP NP May be GIP if NP' is unused.
X X
Y Y
NP' NP'
CDM_MRVF => D_CDMV
DP param Q003 param Comments
N N
MX MX Must be GIP.
Flag FG
M M Must be GIP.
F F Must be GIP or VAR array of size 1.
FS FS Must be GIP or VAR.
NP NP May be GIP if NP' is unused.
X X
Y Y
NP' NP'

CDM_RFF => D_CDMF

DP param Q003 param Comments

N N (1) Must be GIP.

MX 1 or UNUSED | Must be GIP if used.

FG FG (2)

NC NC (3) Must be GIP.

I I (4)

NP NP (6) May be GIP if NP' is unused.
X X (5)

Y Y

NP' NP'

CDM_RFFM => D_CDMF

DP param Q003 param Comments

N N (1) Must be GIP.

MX MX (2)

FG FG (3)

NC NC (4) Must be GIP.

I I (5)

NP NP (7) May be GIP if NP' is unused.
X X (6)

Y Y,

NP' NP’

CDM_RFIR => D_CDMFIR

DP param Q003 param Comments
N N Must be GIP.
MX 1 or UNUSED | Must be GIP if used.
FG FG
NC NC Must be GIP.
1 I
NP NP May be GIP if NP' is unused.
NT NT Must be GIP.
D D Must be GIP.
B B
X X
Y Z
NP' NP'
CDM_RVF => D_CDMV
DP param Q003 param Comments
N N
MY 1 or UNUSED | Must be GIP if used.
Flag FG
M M Must be GIP.
F F Must be GIP or VAR array of size 1.
FS FS Must be GIP or VAR.
NP NP May be GIP if NP' is unused.
X X
Y Y
NP' NP'

DCP_AVGl => D_AVGl

DP param Q003 param Comments

N N Must be GIP.
Flag FG

X X

Y Y

DCP_AVGN => D_AVGN Waiting for implementation decisio

DP param Q003 param Comments

N N Must be GIP.
M M

Flag FG

K K

A A

X X

Y Y

K' K'

A' A'

DCP_CGA => ---

DP param Q003 param Comments

N N (5) Must be GIP.

PMAX PMAX (1)

SMAX SMAX (2)

REINIT REINIT (3)

RHO RHO (4)

BSI BSI (6)

BSS BSSAVE (7)

SCNT SCNT (8)

PCNT PCNT (9)

PW PW (10) Must be array of size 2.
OMNI OMNI (11)

NS NS (12)

EW EW (13)

SCNT’ SCNT'

PCNT’ PCNT’

PW’ PW’ Must be array of size 2.
BS BS

B33’ BSS’

DCP_CLS => D_CLS

DP param Q003 param Comments
PIC PIC
CDF CDF
C C
CRL CRL
CRH CRH
WIND WIND
R R
NC NC
ST SI
CLI CLI
CLF CLF
CBS CBS
PHS PHS
T T
BEAR BEAR
X X
VY VY
R’ R’
NC’ NC’
SI’ ST’
CLI’ : CLI’
CLF’ CLE’
CBS’ CBS’
DCP_CRB => ---
DP param Q003 param Comments
N N
NDV NDV
RSL RSL
B B
KA KA
KB KB
| O Q
CBN CBN
Z Z
IBIN LBIN
DW DW
CB CB
DCB DCB
MT MT
CB’ CB’
DCB’ DCB’
CBOFF CBOFF
DCBOFF DCBOFF

DCP_CSMG => =---
| DP param | 0003 param | Comments
DCP_DEC => D_DEC
DP param Q003 param Comments
N N Must be GIP.
D D Must be GIP.
X X
Y Y

DCP_EAVN => D_EAVN vp

DP_param Q003 param | Comments
N N (2) Must be GIP.
M M (1)
A A (3)
Flag FG (4)
YO YO (5)
X X (6)
Y Y
YO’ YO’

DCP_FROW => D_FROW
DP param Q003 param Comments
N N Must be GIP.
M M Must be GIP.
NW NW Must be GIP.
B B
TS TS Must be GIP.
W W
X X
Y Y

DCP_FRQWC => D_FRQOWC
DP_param Q003 param | Comments
N N Must be GIP.
M M Must be GIP.
NW NW Must be GIP.
B B
TS TS Must be GIP.
W W
X X
Y Y
YC YC

DCP_HAMN => D_HAMN
DP param Q003 param Comments
N N Must be GIP.
Flag FG
X X
Y Y

Not fully implemented.

DCP_INTD => D_INTD

DP param Q003 param | Comments
N N Must be GIP.
MX MX Must be GIP.
NW NW Must be GIP.
M M Must be GIP.
INCR INCR
RY RY Must be GIP.
W W
X X
Y Y
DCP_ISDR => =--
| DP param | 0003 param | Comments
DCP_LAGI => D_LAGI
DP param Q003 param Comments
NS NS Must be GIP.
B B Must be GIP.
CL CL Must be GIP.
\Y \ Must be GIP.
W W Must be array.
STB STB Must be array.
X X
Y Y
DCP_LINT D_LINT
DP param Q003 param Comments
N N Must be GIP.
M Must be GIP.
DX DX
X0 X0
X X
Y Y
Z Z

DCP_MEF => D_MEF
DP param Q003 param Comments
NS NS (1) Must be GIP.
NB NB (2) Must be GIP.
WE' WE (3) Must be GIP.
GF GE (4) Must be GIP.
KACF KACF (5)
KARF KARF (6)
NA NA (7) Must be GIP if used.
AW AW (8)
B B (9)
M M (10) Must be GIP or VAR
NY NY (11) Must be GIP.
SB SB (12)
FC FC (13)
CBO CBO (14)
EPF EPF (16)
POF POF (17)
RPF RPEF (18)
X X (15)
Y Y
SM SM
DCP_MET => D_MET vp
DP param Q003 param | Comments
NS NS (6) Must be GIP.
NB NB (1) Must be GIP.
WE' WT (2) Must be GIP.
GF GT (3) Must be GIP.
KACF KACT (4)
KARF KART (5)
SUMLT SUMLT (7)
C C (8)
R R (9)
CP CP (10)
Flag BFLAG (11)
EPF EPT (13)
POF POT (14)
RPF RPT (15)
X X (12)
SUMLT’ SUMLT'
c’ c’
R’ R’
Cp’/ CPp’
MT MT
DCP_MWAG => D_MWAG
DP param Q003 param Comments
N N Must be GIP.
W W Must be GIP.
L L Must be GIP.
X X
Y Y

DCP_MWGT => D_MWGT
DP _param Q003 param | Comments
NX NX Must be GIP.
NV NV Must be GIP.
J J Must be GIP.
K K
W W
B B
I1 INDX
X X
Y Y
DCP_NME => D_NME
DP param Q003 param Comments
N N Must be GIP.
K K
L L
W W Must be GIP.
X X
Y Y
DCP_NMED => --—-
| DP param | 0003 param | Comments
DCP_NORM3 => D NORM3
DP param Q003 param Comments
N N Must be GIP.
W W Must be GIP.
G G Must be GIP.
T T
WT WT
FG UNUSED
X X
NME NME
Y Y
DCP_NSE => ---
| DP param | 0003 param | Comments

DCP_RINT => D_RINT
DP param Q003 param Comments
N N Must be GIP.
L L Must be GIP.
K K
SF SF Must be GIP.
YO Y0
X0 X0
X X
Y Y
YO’ YO’
X0’ X0’

DCP_SMERGE => D_SMERGE
DP param Q003 param Comments
NB NB Must be GIP.
N [1..NB]N Must be GIP. Family of sizes must be made

into array.

NW NW Must be GIP.
W W
X X
Y Y

DCP_SPL => D_SPL
DP param Q003 param Comments
N N Must be GIP.
M NB Must be GIP.
B BLS Must be GIP.
X X
Y Y

DCP_STI => D _STI vp
DP param 0003 param Comments
N N (1) Must be GIP.
M CL (3) Must be GIP.
K K (4)
A A (5)
X X (6)
Y Y (3)
K’ K’ (1)
A’ Al (2)

DCP_TSS => D_TSS vp

DP param 0003 param Comments
N N (2) Must be GIP.
C COUNT (3)
T THRES (4) Must be GIP.
F F (5)
S S (6)
X X (7
C’ Cc’
F’ B/
VAR VAR
STD STD .
MEAN MEAN
DCP_VDI => D_VDI vp
DP param Q003 param Comments
N N (1) Must be GIP.
M CL (3) Must be GIP.
\Y V (4) Must be GIP.
K K _(5)
A A (6)
X X (7
Y Y (3)
K’ K’ (1)
A’ A’ (2)
DCP_VFILL => D VFILL
DP param Q003 param Comments
N N Must be GIP.
P p Must be GIP.
J J
\4 \
X X
Y Y
DFC_BMAX => ---
| DP param | 0003 param | Comments
DFC_CAP => —---
| DP param | 0003 param | Comments
DFC_CAT => D_CAT
DP param Q003 param Comments
M M Must be GIP.
NC NC Must be GIP.
N [1..NB]N Must be GIP. Family of sizes must be made
into array.
X X
Y Y

DFC_DMUX => D_ DMUX
DP param Q003 param Comments
N N Must be GIP.
M M Must be GIP.
X X
Y Y
DFC_DSD => D_DSD
DP param Q003 param Comments
N N Must be GIP.
T T Must be GIP or VAR.
Cl Cl Must be GIP or VAR.
C2 C2 Must be GIP or VAR.
C3 C3 Must be GIP or VAR.
M M
S S
X X
Y Y
DFC_ERUP => ---
| DP param | 0003 param | Comments
DFC_FCTR => D_FLOC vp
DP param Q003 param Comments
K K Must be GIP array of size N, each element
set to value of K.
N N Must be GIP.
M M Must be GIP.
B B
X X
Y Y
DFC_FLOC => D_FLOC vp
DP param Q003 param Comments
K K Must be GIP array of size N, each element
set to value of K.
N N Must be GIP.
M M Must be GIP.
B B
X X
Y Y
DFC_FMTPK => -—--—-
| DP param | Q003 param | comments

DFC_HDI => D_HDI

DP param Q003 param Comments
N N (1) Must be GIP.
FH FH (3)
MN MN (4) Must be array.
DM1 DM1 (5)
DM2 DM2 (6)
X X/VX _(7)
M M (8/9)
Y Y
VY VY
DFC_IOVR => ---
| bP param | Q003 param | Comments
DFC_LRQT => D_LRQOT
DP param Q003 param Comments
N N (1) Must be GIP.
C C (2)
) 0 (3)
UR UR (6)
IR LR (7)
UL UC (4)
1L LC (5)
X X (8)
Y Y
DFC_MCS => =—--
DP param Q003 param Comments
FC FC
K K Must be GIP.
N N Must be GIP.
NAB NAB
M M Must be GIP ARRAY (5).
MM MM Must be GIP.
W W Must be GIP ARRAY (5).
B B
CcC CcC
C C
CX CX
X X
FCS’ FCS’
c’ c’
X’ X’
Y1l Y1
Y2 Y2
Y3 Y3
Y4 Y4
Y5 Y5

DFC_MUX => D_MUX
DP param _0003 param Comments
N N Must be GIP.
M M Must be GIP.
X X
Y Y
DFC_OTBD => ~--~
| DP param | 0003 param | Comments
DFC_OTR => =---
| DP param | 0003 param | Comments
DFC_PACK => D_PACK
DP param 0003 param Comments
NX NX Must be GIP.
NY NY Must be GIP.
M M Must be GIP.
B B Must be GIP.
FG FG
RVO RV0
X X
Y Y
DFC_PSK => -—--
| DP param | 0003 param | Comments
DFC_REORD => D_REORD
DP param 0003 param Comments
Must be GIP.
Must be GIP.

o Bl (e @] [oed b g P24
KIXIRIG|E P ==

DFC_REP => D_REP (Equivalenced output queues. Output queues cannot be
initialized.)

DP param Q003 param Comments
N N Must be GIP.
M M Must be GIP.
X X
Y Y
=> D_REPNE vp Distinct output queues.
DP param Q003 param Comments
N N Must be GIP.
M M Must be GIP.
S UNUSED
X X
Y Y
DFC_REP2 => D_REP (Equivalenced output queues. Output queues cannot be
initialized.)
DP param Q003 param Comments
N N Must be GIP.
M M Must be GIP.
X X
Y Y
=> D_REPNE vp Distinct output queues.
DP param 0003 param Comments
N N Must be GIP.
M M Must be GIP.
S UNUSED
X X
Y Y
DFC_REQ => D_REQ
P param Q003 param Comments
Must be GIP.

Must be array.

nl<xlalz|ol

NI X][O =

DFC_REQV => D_REQV
DP param Q003 param | Comments
Must be GIP.

Must be GIP.

meaggibz
meagng

DFC_SCAT => D_SCAT vp

DP param Q003 param Comments
NC NC Must be GIP.
C C
M M Must be GIP.
N N Must be GIP.
X X
Y Y
Uy UY
K K
DFC_SEP => D_SEP
DP param Q003 param Comments
N N Must be GIP.
M M Must be GIP.
X X
Y Y
DFC_STA => —---
| DP param | 0003 param | Comments |
DFC_SWTH D_SWTH vp DFC_SWTH works in conjunction with the Q003
function MERGE. D_SWTH is a standalone
primitive. Hence the following parameter
associations are merely guidelines; the
parameter C may need to be altered to allow
D_SWTH to perform like DFC_SWTH.
DP param Q003 param Comments
N ream (X) Must be GIP.
M members (Y) Must be GIP.
C C See note above.
X X
Y Y

DFC_TIME => ---

| DP param | Q003 param | cComments |
DFC_TSR => ---

| DP param | 0003 param | Comments |
DFC_UNPK6 => ---

| DP param | 0003 param | Comments |

DFC_VCAT => D_CAT Concatenation only, with NC = 1. If NC > 1, each
input family member must previously be run
through D_CAT to combine each set of v_arrays
into one v_array. For reordering, a
combination of D SEP and D_CAT may be used.

DP param 0003 param Comments

M M Must be GIP.
NC NC Must be GIP.
N UNUSED

X X

Y Y

DFC_VPAC => ---

| DP param | 0003 param | Comments |
DFC_VREP => D_REP Equivalenced output queues. Output
queues cannot be initialized.
DP param Q003 param Comments
N UNUSED
M M Must be GIP.
X X
Y Y
=> D_REPNE vp Distinct output queues.
DP param Q003 param Comments
N UNUSED
M M Must be GIP.
S UNUSED
X X
Y Y

DFC_VSCT => D_VSCT

DP param Q003 param Comments

NC NC Must be GIP.
NY NY Must be GIP.
CM CcM

CNC CNC

FG FG

FO FO

M M Must be GIP.
X X

VY VY

KK KK

DFC_VT => --- If the maximum number of output elements
desired is KMAX(Y), DFC_VT may be accomplished
with D_REP or D_REPNE. If the maximum number
of output elements desired is less than
KMAX (Y), D_REORD may be used. KK is the amount
of valid data in each output v_array, but no
Domain primitive exists to extract this
information from a queue of v_arrays.

DGP_BFWT =>

| DP param [0003 param | Comments
DGP_CWFM => ---
| DP param] 0003 param | Comments
DGP_HFMG => =---
DP param Q003 param | Comments
NY NY Must be GIP.
A A
DC DC
FOTC FOTC
PO PO
TCFES TCFS
I I
Y Y
I’ I’
DGP_WWG => --—-
| DP param | 0003 param | Comments

DMC_CTOR => D_CTOR

DP param Q003 param Comments

N N Must be GIP.
X Z

Y X

Z Y

DMC_EMC => D_EMC

DP param | Q003 param | Comments

Must be GIP.

N
X
Y

] e b=

DMC_FLIN => D_RTOI

DP param Q003 param Comments
N N Must be GIP.
A A
B B
X X
Y Y
DMC_FXFL -

| DP param | 0003 param | Comments

FFT _CC => D_FFT
DP param 0003 param Comments
N N Must be GIP.
M M Must be GIP.
FI FI Must be GIP.
B B Must be GIP.
ov UNUSED
X X
Y Y
FFT_CC3 => —--—-
| DP param | 0003 param | Comments
FFT_CR => D_FFT
DP param Q003 param Comments
N N Must be GIP.
M M Must be GIP.
FI FI Must be GIP.
B B Must be GIP.
Oov UNUSED
X X
Y Y
FFT_R2C => —--
| DP param | 0003 param | Comments
FFT_RC => D_FFT
DP param Q003 param Comments
N N Must be GIP.
M M Must be GIP.
FI FI Must be GIP.
B B Must be GIP.
ov UNUSED
X X
Y Y

FIR _C1lS => D_FIR1S
DP param Q003 param Comments
N N Must be GIP.
MX 1l or UNUSED | Must be GIP if used.
NT NT Must be GIP.
D D Must be GIP.
A A
X X
Y Y
FIR_C2S => D_FIR2S
DP param Q003 param Comments
N N Must be GIP.
MX 1 or UNUSED | Must be GIP if used.
NT1 NT1 Must be GIP.
NT2 NT2 Must be GIP.
D1 D1 Must be GIP.
D2 D2 Must be GIP.
A A
X X
Y Y
FIR_C7 => -
| DP param | 0003 param | Comments
FIR MClS => D FIR1lS
DP param Q003 param Comments
N N Must be GIP.
MX MX Must be GIP.
NT NT Must be GIP.
D D Must be GIP.
A A
X X
Y Y
FIR MX23 => ---
| DP param | 0003 param | Comments
FIR MX33 => ---
| DP param | 0003 param | Comments
FIR MX7 => ---
| DP param | 0003 param | Comments
FIR R19 => ---
l DP param | Q003 param | Comments

FI

R_R1S => D_FIR1S
DP param 0003 param Comments
N N Must be GIP.
MX 1 or UNUSED | Must be GIP if used.
NT NT Must be GIP.
D D Must be GIP.
A A
X X
Y Y
R_R1SC => D_FIR1S
DP param Q003 param Comments
N N Must be GIP.
MX 1 or UNUSED | Must be GIP if used.
NT NT Must be GIP.
D D Must be GIP.
A A
X X
Y Y

IIR_C1S => D_IIR1S

DP param Q003 param Comments

N N Must be GIP.
MX 1 or UNUSED | Must be GIP if used.
NZ NZ Must be GIP.
NP NP Must be GIP.
D D Must be GIP.
C C

Flag FG

X X

YO Y0

Y Y

YO’ YO’

IIR_C22 => --~--

| DP param | 0003 param | Comments

MOC_TPSE => D_MTRANS

DP param Q003 param Comments

Must be GIP.

Must be GIP.

KIX|2]=
<KIXIR|=

SSP_AGC => D_AGC
DP param Q003 param Comments
N N Must be GIP.
NI NI
FC FC
PERIOD PERIOD Must be GIP.
PMAX PMAX
PMIN PMIN
PTARG PTARG
FG FG
C C
X X
Y Y
FG’ FG’
c’ c’
CNT’ CNT’
SSP_BCOR => =---
| DP param | Q003 param | Comments
SSP_BMS => ---
| DP param | 0003 param | Comments
SSP_CARD => D_CARD
DP param 0003 param Comments
N N Must be GIP.
A A
B B
C C
CS CS
X X
Y Y
Z Z
CR CR
SSP_CCL => =—---
| DP param | Q003 param | Comments
SSP_CVU => —---
| DP param | 0003 param | Comments
SSP_DCD => D_DCD
DP param Q003 param Comments
N N Must be GIP.
XS XS
XC XC
X0 X0
YS YS
YC YC

SSP_DNS => ---
| DP param | 0003 param | Comments
SSP_DSC => ---
| DP param | 0003 param | Comments
SSP_EST => —=--—
| DP param | 0003 param | Comments
SSP_FPD => ---
| DP param | Q003 param | comments
SSP_GAG => -—=-
| DP param | 0003 param | Comments
SSP_LPP => ==~
| DP param] 0003 param | Comments
SSP_LPP2 => ---
| DP param | 0003 param | Comments
SSP_LPPA => ---
| DP param | Q003 param | comments
SSP_MAP => ---
| DP param | 0003 param | Comments
SSP_MEB => ---
| DP param | Q003 param | comments
SSP_PDF => -—--—-
| DP param | 0003 param | Comments
SSP_PPIN => =--
| DP param | 0003 param | Comments
SSP_SYNO => D_SYNO
DP param Q003 param Comments
N N Must be GIP.
FG FG
MAGVAR MAGVAR
NS NS
EW EW
OMNI OMNT
BEAR BEAR
SSP_TDT => ---
| DP param | Q003 param | comments
SSP_TINT => ---
| DP param | 0003 param | Comments
SSP_TRK => =—---
| DP param | 0003 param | Comments

SSP_UTD => ---

| DP param | Q003 param | Comments

SSP_ZDT => D_ZDT

DP param Q003 param Comments

N N Must be GIP.
CF CF ‘

BS BS

X X

F F

S S

SCF SCF

BSY BSY

Y Y

VCC_VADD => D_VADD
DP param Q003 param Comments
N N Must be GIP.
X X
Y Y
Z Z
VCC_VDIV => D VDIV
DP param Q003 param Comments
N N Must be GIP.
X X
Y Y
Z Z
VCC_VMUL => D_VMUL
DP param 0003 param Comments
N N (1) Must be GIP.
Flag 1-FG (2)
X X (4)
Y Y (3)

Z

VCM_CTH2 => D_CTH2

The Q003 parame<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>